
Perform sensitivity analysis for missing participant outcome data
Source:R/run.sensitivity_function.R
run_sensitivity.Rd
Performs a sensitivity analysis by applying pairwise meta-analysis or network meta-analysis for a series of different scenarios about the informative missingness parameter.
Usage
run_sensitivity(
full,
assumption,
mean_scenarios,
var_misspar,
n_chains,
n_iter,
n_burnin,
n_thin,
inits = NULL
)
Arguments
- full
- assumption
Character string indicating the structure of the informative missingness parameter. Set
assumption
equal to one of the following two:"HIE-ARM"
, or"IDE-ARM"
(see 'Details'). The default argument is"IDE-ARM"
. The abbreviations"IDE"
, and"HIE"
stand for identical, and hierarchical, respectively.- mean_scenarios
A vector with numeric values for the mean of the normal distribution of the informative missingness parameter (see 'Details'). The vector should have a length equal to 5 or larger. The missing-at-random (MAR) assumption should be the median of the vector, so that the same number of informative scenarios appear before and after the MAR. The default scenarios are c(-log(3), -log(2), log(0.9999), log(2), log(3)) and c(-2, -1, 0, 1, 2) for binary and continuous outcome data, respectively.
- var_misspar
A positive non-zero number for the variance of the normal distribution of the informative missingness parameter. When the
measure
(defined inrun_model
) is"OR"
,"MD"
, or"SMD"
the default argument is 1. When themeasure
is"ROM"
, the default argument is 0.04.- n_chains
Integer specifying the number of chains for the MCMC sampling; an argument of the
jags
function of the R-package R2jags. The default argument is 2.- n_iter
Integer specifying the number of Markov chains for the MCMC sampling; an argument of the
jags
function of the R-package R2jags. The default argument is 10000.- n_burnin
Integer specifying the number of iterations to discard at the beginning of the MCMC sampling; an argument of the
jags
function of the R-package R2jags. The default argument is 1000.- n_thin
Integer specifying the thinning rate for the MCMC sampling; an argument of the
jags
function of the R-package R2jags. The default argument is 1.- inits
A list with the initial values for the parameters; an argument of the
jags
function of the R-package R2jags. The default argument isNULL
, and JAGS generates the initial values.
Value
A list of R2jags outputs on the summaries of the posterior distribution, and the Gelman-Rubin convergence diagnostic (Gelman et al., 1992) of the following monitored parameters for a random-effects pairwise meta-analysis:
- EM
The estimated summary effect measure (according to the argument
measure
defined inrun_model
).- EM_pred
The predicted summary effect measure (according to the argument
measure
defined inrun_model
). This element does not appear in the case of a fixed-effect meta-analysis.- EM_LOR
The estimated summary odd ratio in the logarithmic scale when
measure = "RR"
ormeasure = "RD"
.- EM_LOR_pred
The predicted summary odd ratio in the logarithmic scale when
measure = "RR"
ormeasure = "RD"
. This element does not appear in the case of a fixed-effect meta-analysis.- tau
The between-trial standard deviation. This element does not appear in the case of a fixed-effect meta-analysis.
In a random-effects network meta-analysis, EM
refer to all possible
pairwise comparisons of interventions in the network. Furthermore,
tau
is typically assumed to be common for all observed comparisons
in the network.
Details
The model runs in JAGS
and the progress of the simulation
appears on the R console. The number of times run_sensitivity
is
used appears on the R console as a text in red and it equals the
number of scenarios defined as the square of the length of the
vector specified in mean_scenarios
(see 'Examples').
The output of run_sensitivity
is used as an S3 object by other
functions of the package to be processed further and provide an
end-user-ready output.
In the case of pairwise meta-analysis, EM
and tau
are
estimated as many times as the number of scenarios considered.
In the case of network meta-analysis, each possible pairwise comparison is
estimated as many times as the number of scenarios considered.
The informative missingness parameter is assumed to differ only across the
interventions of the dataset. Therefore, the user can specify the
informative missingness parameter to be arm-specific and identical
(assumption = "IDE-ARM"
), or arm-specific and
hierarchical (assumption = "HIE-ARM"
) (Spineli et al., 2021).
The length of the vector specified in argument mean_scenarios
should
be equal to or more than 5 (a positive odd integer) to allow for an
adequate number of scenarios. It is important that the number
corresponding to the MAR assumption is the middle of the numbers in the
vector specified in argument mean_scenarios
. The MAR
assumption constitutes the primary analysis.
Under the informative missingness difference of means parameter (relevant
for the raw and standardised mean diffenre), the MAR assumption equals 0.
Under the informative missingness odds ratio parameter (IMOR; relevant for
the odds ratio) and the informative missingness ratio of means (IMRoM;
relevant for the ratio of means) parameter, the MAR assumption equals 1;
however, both parameters are analysed in the logarithmic scale. We advise
using the value 0.999
rather than 1
in mean_scenarios
for the IMOR and IMRoM parameters; otherwise, the execution of the function
will be stopped and the error 'Invalid parent values' will be printed on
the R console.
Currently, there are no empirically-based prior distributions for the
informative missingness parameters. The users may refer to Spineli (2019),
Mavridis et al. (2015), Turner et al. (2015), and White et al. (2008) to
determine mean_scenarios
for an informative missingness mechanism
and select a proper value for var_misspar
.
run_sensitivity
inherits the arguments data
,
measure
, model
, heter_prior
, D
, indic
,
base_risk
, and ref
from run_model
(now contained in the argument full
). This prevents specifying a
different Bayesian model from that considered in the primary analysis
(via run_model
)–an exception in the assumption
argument as it is restricted to only two character strings. Therefore, the
user needs first to apply run_model
, and then use
run_sensitivity
(see 'Examples').
The run_sensitivity
function also returns the arguments
measure
, scenarios
, D
, heter
, n_chains
,
n_iter
, n_burnin
, and n_thin
as specified by the user
to be inherited by other relevant functions of the package.
The model is updated until convergence using the
autojags
function of the R-package
R2jags with 2 updates and
number of iterations and thinning equal to n_iter
and n_thin
,
respectively.
run_sensitivity
can be used only when missing participant
outcome data have been extracted for at least one trial. Otherwise, the
execution of the function will be stopped and an error message will be
printed on the R console.
References
Gelman, A, Rubin, DB. Inference from iterative simulation using multiple sequences. Stat Sci 1992;7(4):457–72. doi: 10.1214/ss/1177011136
Mavridis D, White IR, Higgins JP, Cipriani A, Salanti G. Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta-analysis. Stat Med 2015;34(5):721–41. doi: 10.1002/sim.6365
Spineli LM, Kalyvas C, Papadimitropoulou K. Quantifying the robustness of primary analysis results: A case study on missing outcome data in pairwise and network meta-analysis. Res Synth Methods 2021;12(4):475–90. doi: 10.1002/jrsm.1478
Spineli LM. An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis. BMC Med Res Methodol 2019;19(1):86. doi: 10.1186/s12874-019-0731-y
Turner NL, Dias S, Ades AE, Welton NJ. A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta-analysis. Stat Med 2015;34(12):2062–80. doi: 10.1002/sim.6475
White IR, Higgins JP, Wood AM. Allowing for uncertainty due to missing data in meta-analysis–part 1: two-stage methods. Stat Med 2008;27(5):711–27. doi: 10.1002/sim.3008
Examples
data("pma.taylor2004")
# Read results from 'run_model' (using the default arguments)
res <- readRDS(system.file('extdata/res_taylor.rds', package = 'rnmamod'))
# \donttest{
# Perform the sensitivity analysis (default arguments)
# Note: Ideally, set 'n_iter' to 10000 and 'n_burnin' to 1000
run_sensitivity(full = res,
assumption = "IDE-ARM",
var_misspar = 1,
n_chains = 3,
n_iter = 1000,
n_burnin = 100,
n_thin = 5)
#> The default scenarios were considered: c(-2, -1, 0, 1, 2).
#> JAGS generates initial values for the parameters.
#> 1 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 1 until convergence
#> 2 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 2 until convergence
#> 3 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 3 until convergence
#> 4 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 4 until convergence
#> 5 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 5 until convergence
#> 6 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 6 until convergence
#> 7 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 7 until convergence
#> 8 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 8 until convergence
#> 9 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 9 until convergence
#> 10 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 10 until convergence
#> 11 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 11 until convergence
#> 12 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 12 until convergence
#> 13 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 13 until convergence
#> 14 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 14 until convergence
#> 15 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 15 until convergence
#> 16 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 16 until convergence
#> 17 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 17 until convergence
#> 18 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 18 until convergence
#> 19 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 19 until convergence
#> 20 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 20 until convergence
#> 21 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 21 until convergence
#> 22 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 22 until convergence
#> 23 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 23 until convergence
#> 24 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 24 until convergence
#> 25 out of 25 total scenarios
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 16
#> Unobserved stochastic nodes: 28
#> Total graph size: 348
#>
#> Initializing model
#>
#> Updating model for scenario 25 until convergence
#> $EM
#> mean sd 2.5% 25% 50% 75%
#> [1,] -0.098585142 0.2477695 -0.5448514 -0.2511135 -0.105667108 0.06666307
#> [2,] -0.122173224 0.2834465 -0.5960651 -0.3081796 -0.125425163 0.04643160
#> [3,] -0.140355224 0.2753617 -0.6427526 -0.3098226 -0.117604138 0.01232324
#> [4,] -0.160552623 0.2527240 -0.6560794 -0.3039149 -0.158758356 -0.01294888
#> [5,] -0.173947065 0.2617689 -0.6751999 -0.3449300 -0.175092438 -0.02170691
#> [6,] -0.061175482 0.2622071 -0.5837536 -0.2162821 -0.070993556 0.11008269
#> [7,] -0.075977635 0.2867725 -0.6024684 -0.2318131 -0.074291056 0.08331781
#> [8,] -0.132448490 0.2380859 -0.6125521 -0.2772930 -0.135351510 0.01833532
#> [9,] -0.117621307 0.2584321 -0.6900217 -0.2552826 -0.101700843 0.02961161
#> [10,] -0.147559029 0.2568479 -0.6868824 -0.2989574 -0.153037347 0.01048411
#> [11,] -0.028235912 0.2476901 -0.5247728 -0.1734267 -0.005740572 0.12745670
#> [12,] -0.100897704 0.2449501 -0.5713168 -0.2578322 -0.106142106 0.05178246
#> [13,] -0.097751434 0.2561717 -0.5511514 -0.2511608 -0.105182015 0.06272879
#> [14,] -0.127487597 0.2620980 -0.6508298 -0.2782384 -0.113433582 0.02056332
#> [15,] -0.135539424 0.2556825 -0.6620708 -0.2740940 -0.124402058 0.01608418
#> [16,] -0.023232345 0.2483834 -0.5197527 -0.1735213 -0.026653561 0.14197808
#> [17,] -0.039584071 0.2605575 -0.5735668 -0.1914476 -0.037859733 0.13168181
#> [18,] -0.057639112 0.2691562 -0.5760693 -0.2132433 -0.065759158 0.10168698
#> [19,] -0.067984470 0.2583847 -0.5710132 -0.2318370 -0.064363375 0.08142817
#> [20,] -0.115503093 0.2708791 -0.6448837 -0.2807997 -0.117078278 0.04842236
#> [21,] 0.009629076 0.2520274 -0.4976840 -0.1511609 0.025190790 0.17293649
#> [22,] -0.013778359 0.2374024 -0.4978035 -0.1587481 -0.015786390 0.12802566
#> [23,] -0.066611019 0.2390253 -0.5366574 -0.2237952 -0.057299230 0.09362090
#> [24,] -0.069179779 0.2721143 -0.6200773 -0.2396625 -0.074214109 0.09444577
#> [25,] -0.084587507 0.2521505 -0.5687310 -0.2374860 -0.088594252 0.08138683
#> 97.5% Rhat n.eff
#> [1,] 0.3615704 1.009198 210
#> [2,] 0.4586432 1.006852 600
#> [3,] 0.3884170 1.022334 170
#> [4,] 0.3332049 1.010474 370
#> [5,] 0.2832294 1.001417 600
#> [6,] 0.4009676 1.015431 390
#> [7,] 0.4105424 1.041476 80
#> [8,] 0.3259568 1.040007 52
#> [9,] 0.3328339 1.024181 150
#> [10,] 0.3224797 1.049614 61
#> [11,] 0.4140850 1.001252 600
#> [12,] 0.3614750 1.000299 600
#> [13,] 0.3823749 1.007284 470
#> [14,] 0.3693723 1.027623 72
#> [15,] 0.3580304 1.021584 180
#> [16,] 0.4405524 1.016846 350
#> [17,] 0.4990078 1.001661 600
#> [18,] 0.4708527 1.017649 130
#> [19,] 0.4441300 1.002221 600
#> [20,] 0.3673389 1.020872 190
#> [21,] 0.4436620 1.003259 600
#> [22,] 0.4507411 1.014672 240
#> [23,] 0.3599848 1.008879 280
#> [24,] 0.4662736 1.000479 600
#> [25,] 0.3776312 1.003403 410
#>
#> $EM_pred
#> mean sd 2.5% 25% 50% 75%
#> [1,] -0.10401285 0.3733000 -0.9046155 -0.3110445 -0.089701923 0.10895335
#> [2,] -0.13303577 0.5198664 -1.0831250 -0.3516214 -0.124796139 0.08093764
#> [3,] -0.17094184 0.4832055 -1.2268919 -0.3758341 -0.129666701 0.05072319
#> [4,] -0.13530303 0.4338663 -0.9818621 -0.3169703 -0.140727304 0.06083527
#> [5,] -0.19676043 0.4316295 -1.0877829 -0.3780687 -0.165875361 0.01247477
#> [6,] -0.05583495 0.4254428 -0.8742355 -0.2553714 -0.067687740 0.17015312
#> [7,] -0.08955995 0.4531946 -0.9661055 -0.3037336 -0.066995178 0.13543428
#> [8,] -0.13937064 0.3799901 -0.9123243 -0.3145656 -0.120426161 0.05667444
#> [9,] -0.14277894 0.4555477 -1.0257072 -0.3100469 -0.106326741 0.06157884
#> [10,] -0.16027558 0.4042255 -1.0410098 -0.3719204 -0.169094865 0.05827288
#> [11,] -0.02860951 0.4069202 -0.7678804 -0.2464405 -0.018143562 0.18649954
#> [12,] -0.11499760 0.4195468 -1.0313512 -0.3261744 -0.114661164 0.09495771
#> [13,] -0.06587474 0.4625878 -0.8137655 -0.3332975 -0.080286998 0.14827991
#> [14,] -0.13556110 0.4686706 -1.0501913 -0.3442697 -0.127565169 0.07376001
#> [15,] -0.13711391 0.4170586 -1.1031621 -0.3201304 -0.124164067 0.08255056
#> [16,] -0.02279512 0.3880477 -0.8594341 -0.2052677 -0.014935061 0.17230248
#> [17,] -0.04549223 0.4302355 -0.8834158 -0.2528167 -0.038816872 0.16970570
#> [18,] -0.06913113 0.4726580 -1.0248836 -0.2667871 -0.066444602 0.12836887
#> [19,] -0.05833253 0.4018164 -0.8814351 -0.2654280 -0.057963203 0.13712049
#> [20,] -0.12354569 0.4231540 -0.9865541 -0.3210973 -0.120102151 0.10604299
#> [21,] 0.02031559 0.3752779 -0.7422987 -0.1849218 0.009033804 0.24059589
#> [22,] -0.02977679 0.4210429 -0.7725389 -0.2072706 -0.019288948 0.17923785
#> [23,] -0.05899007 0.3962546 -0.8439239 -0.2742125 -0.050574915 0.12939704
#> [24,] -0.04897328 0.4098437 -0.8580556 -0.2694113 -0.055732817 0.15507599
#> [25,] -0.09585334 0.4251563 -0.9065438 -0.3076704 -0.094446836 0.11851809
#> 97.5% Rhat n.eff
#> [1,] 0.5989984 1.004212 380
#> [2,] 0.6364095 1.084590 450
#> [3,] 0.7091741 1.022615 420
#> [4,] 0.8477200 1.012556 560
#> [5,] 0.5214141 1.022888 600
#> [6,] 0.7061002 1.017046 310
#> [7,] 0.7932607 1.029567 160
#> [8,] 0.6681611 1.030157 75
#> [9,] 0.6009639 1.015619 600
#> [10,] 0.6287712 1.017966 110
#> [11,] 0.6801038 1.007697 460
#> [12,] 0.6976434 1.002784 470
#> [13,] 0.8613740 1.024311 600
#> [14,] 0.7054536 1.012191 150
#> [15,] 0.6112558 1.015406 290
#> [16,] 0.7004359 1.007324 340
#> [17,] 0.8318758 1.007208 580
#> [18,] 0.7098425 1.016090 490
#> [19,] 0.7581055 1.002322 600
#> [20,] 0.5656467 1.014618 160
#> [21,] 0.7659916 1.002846 600
#> [22,] 0.7351277 1.005583 600
#> [23,] 0.8375734 1.004431 420
#> [24,] 0.8340633 1.007240 570
#> [25,] 0.6522140 1.009818 500
#>
#> $tau
#> mean sd 2.5% 25% 50% 75% 97.5%
#> [1,] 0.2380954 0.2153363 0.013500658 0.08330434 0.1757870 0.3197826 0.7692328
#> [2,] 0.2611240 0.2871277 0.020409472 0.09426574 0.1858401 0.3377040 0.8606076
#> [3,] 0.2799059 0.2677395 0.019163284 0.10497913 0.2017856 0.3597663 1.0328539
#> [4,] 0.2568161 0.2133799 0.011851635 0.11082470 0.2034187 0.3483924 0.7334966
#> [5,] 0.2278381 0.2124609 0.016737509 0.08367280 0.1686403 0.3102389 0.7309463
#> [6,] 0.2424450 0.2159332 0.016689730 0.10513529 0.1840408 0.3121328 0.8594661
#> [7,] 0.2470998 0.2403946 0.007621982 0.08910924 0.1781861 0.3327522 0.8027401
#> [8,] 0.2187730 0.1953566 0.007684777 0.08889238 0.1645052 0.2958507 0.7393782
#> [9,] 0.2545337 0.2461588 0.010088629 0.08756754 0.1917536 0.3450815 0.8824341
#> [10,] 0.2470150 0.2160814 0.019031335 0.10732125 0.1940555 0.3104467 0.8702732
#> [11,] 0.2537160 0.2427514 0.012560056 0.09030012 0.1899642 0.3378698 0.9154208
#> [12,] 0.2436171 0.2209712 0.022775443 0.10123559 0.1868818 0.3226801 0.7983610
#> [13,] 0.2535471 0.2195511 0.021794880 0.10648953 0.2023536 0.3372929 0.7729696
#> [14,] 0.2516386 0.2353316 0.022690202 0.09882553 0.1896556 0.3361160 0.8278557
#> [15,] 0.2427511 0.2053660 0.020906521 0.10009628 0.1817961 0.3257088 0.8080272
#> [16,] 0.2370021 0.2114464 0.014949896 0.09158281 0.1774504 0.3188572 0.8118558
#> [17,] 0.2493036 0.2398025 0.021958679 0.09546764 0.1861069 0.3217919 0.8072718
#> [18,] 0.2494615 0.2556767 0.007675567 0.08725075 0.1764193 0.3293491 0.8900274
#> [19,] 0.2389104 0.2159729 0.013128587 0.08630301 0.1801127 0.3244172 0.7958209
#> [20,] 0.2426813 0.2546914 0.005535893 0.08563427 0.1827922 0.3165899 0.7863569
#> [21,] 0.2364303 0.2243880 0.011131865 0.09055316 0.1790937 0.3116436 0.7670977
#> [22,] 0.2188739 0.2490662 0.010269351 0.07643701 0.1693234 0.2901998 0.6910289
#> [23,] 0.2368482 0.2057956 0.022285154 0.09028180 0.1793596 0.3152875 0.7674719
#> [24,] 0.2414290 0.2059855 0.013362208 0.09341286 0.1917661 0.3357936 0.7509146
#> [25,] 0.2248440 0.2127396 0.006184910 0.07549843 0.1664587 0.2945672 0.9150064
#> Rhat n.eff
#> [1,] 1.023887 600
#> [2,] 1.094453 31
#> [3,] 1.008864 600
#> [4,] 1.002374 520
#> [5,] 1.008517 600
#> [6,] 1.012482 160
#> [7,] 1.050396 110
#> [8,] 1.076901 47
#> [9,] 1.028398 260
#> [10,] 1.019464 130
#> [11,] 1.012460 410
#> [12,] 1.012384 570
#> [13,] 1.000525 600
#> [14,] 1.007930 280
#> [15,] 1.023112 110
#> [16,] 1.015944 120
#> [17,] 1.005138 300
#> [18,] 1.032400 93
#> [19,] 1.016889 600
#> [20,] 1.006836 240
#> [21,] 1.021354 140
#> [22,] 1.009349 600
#> [23,] 1.011602 600
#> [24,] 1.012395 600
#> [25,] 1.007432 530
#>
#> $measure
#> [1] "SMD"
#>
#> $model
#> [1] "RE"
#>
#> $scenarios
#> [1] -2 -1 0 1 2
#>
#> $D
#> [1] 0
#>
#> $heter
#> [1] -2.9900000 0.2143347 4.0000000
#>
#> $n_chains
#> [1] 3
#>
#> $n_iter
#> [1] 1000
#>
#> $n_burnin
#> [1] 100
#>
#> $n_thin
#> [1] 5
#>
#> attr(,"class")
#> [1] "run_sensitivity"
# }