
Package index
-
balloon_plot()
- Enhanced balloon plot
-
baseline_model()
- The baseline model for binary outcome
-
bland_altman_plot()
- The Bland-Altman plot
-
comp_clustering()
- End-user-ready results for comparison dissimilarity and hierarchical clustering (Comparisons' comparability for transitivity evaluation)
-
covar_contribution_plot()
- Visualising study percentage contributions against a covariate
-
data_preparation()
- Prepare the dataset in the proper format for R2jags
-
dendro_heatmap()
- Dendrogram with amalgamated heatmap (Comparisons' comparability for transitivity evaluation)
-
describe_network()
- A function to describe the evidence base
-
distr_characteristics()
- Visualising the distribution of characteristics (Comparisons' comparability for transitivity evaluation)
-
forestplot()
- Comparator-specific forest plot for network meta-analysis
-
forestplot_juxtapose()
- Forest plot of juxtaposing several network meta-analysis models
-
forestplot_metareg()
- Comparator-specific forest plot for network meta-regression
-
gower_distance()
- Weighted Gower's dissimilarity measure (Trials' comparability for transitivity evaluation)
-
heatmap_missing_dataset()
- Heatmap of proportion of missing participants in the dataset
-
heatmap_missing_network()
- Heatmap of proportion of missing participants in the network
-
heatmap_robustness()
- Heatmap of robustness
-
heter_density_plot()
- Visualising the density of two prior distributions for the heterogeneity parameter
-
heterogeneity_param_prior()
- Determine the prior distribution for the heterogeneity parameter
-
improved_ume()
- Detect the frail comparisons in multi-arm trials
-
inconsistency_variance_prior()
- Function for the hyper-parameters of the prior distribution of the inconsistency variance (network meta-analysis with random inconsistency effects)
-
internal_measures_plot()
- Internal measures for cluster validation (Comparisons' comparability for transitivity evaluation)
-
intervalplot_panel_ume()
- A panel of interval plots for the unrelated mean effects model
-
kld_barplot()
- Barplot for the Kullback-Leibler divergence measure (missingness scenarios)
-
kld_inconsistency()
- Density plots of local inconsistency results and Kullback-Leibler divergence when 'rnmamod', 'netmeta' or 'gemtc' R packages are used
-
kld_inconsistency_user()
- Density plots of local inconsistency results and Kullback-Leibler divergence (When dataset is created by the user)
-
kld_measure()
- Function for the Kullback-Leibler Divergence of two normally distributed treatment effects for the same pairwise comparison
-
league_heatmap()
- League heatmap for estimation
-
league_heatmap_pred()
- League heatmap for prediction
-
league_table_absolute()
- League table for relative and absolute effects
-
league_table_absolute_user()
- League table for relative and absolute effects (user defined)
-
leverage_plot()
- Leverage plot
-
mcmc_diagnostics()
- Markov Chain Monte Carlo diagnostics
-
metareg_plot()
- End-user-ready results for network meta-regression
-
miss_characteristics()
- Visualising missing data in characteristics (Comparisons' comparability for transitivity evaluation)
-
missingness_param_prior()
- Define the mean value of the normal distribution of the missingness parameter
-
netplot()
- Network plot
-
nma.baker2009
- Pharmacological interventions for chronic obstructive pulmonary disease
-
nma.bottomley2011
- Pharmacological interventions for moderately severe scalp psoriasis
-
nma.dogliotti2014
- Oral antithrombotics for stroke episode
-
nma.fluoride.donegan2018
- Topical fluoride interventions for preventing dental caries
-
nma.liu2013
- Antidepressants in Parkinson's disease
-
nma.malaria.donegan2018
- Artemether, artesunate and quinine for severe malaria
-
nma.schwingshackl2014
- Training modalities for patients with type 2 diabetes
-
nma.stowe2011
- Antiparkinsonian interventions for later Parkinson's disease
-
nodesplit_plot()
- End-user-ready results for the node-splitting approach
-
pma.hetrick2012
- Paroxetine versus placebo for depressive disorders
-
pma.taylor2004
- Inositol versus glucose for depressive episode
-
prepare_model()
- WinBUGS code for Bayesian pairwise or network meta-analysis and meta-regression
-
prepare_nodesplit()
- WinBUGS code for the node-splitting approach
-
prepare_ume()
- WinBUGS code for the unrelated mean effects model
-
rainbow_similarities()
- Rainbow of Gower's similarity values for each study (Transitivity evaluation)
-
rankosucra_plot()
- Rankograms and SUCRA curves
-
rnmamod-package
rnmamod
- rnmamod: Bayesian Network Meta-analysis with Missing Participants
-
robustness_index()
- Robustness index
-
robustness_index_user()
- Robustness index when 'metafor' or 'netmeta' are used
-
run_metareg()
- Perform Bayesian pairwise or network meta-regression
-
run_model()
- Perform Bayesian pairwise or network meta-analysis
-
run_nodesplit()
- Perform the node-splitting approach
-
run_sensitivity()
- Perform sensitivity analysis for missing participant outcome data
-
run_series_meta()
- Perform a series of Bayesian pairwise meta-analyses
-
run_ume()
- Perform the unrelated mean effects model
-
scatterplot_sucra()
- Scatterplot of SUCRA values
-
scatterplots_dev()
- Deviance scatterplots
-
series_meta_plot()
- End-user-ready results for a series of pairwise meta-analyses
-
study_perc_contrib()
- Calculate study percentage contributions to summary treatment effects or regression coefficients
-
table_tau2_prior()
- Predictive distributions for the between-study variance in a future meta-analysis on odds ratio or standardised mean difference
-
taylor_continuous()
- Pattern-mixture model with Taylor series for continuous outcome
-
taylor_imor()
- Pattern-mixture model with Taylor series for a binary outcome
-
ume_plot()
- End-user-ready results for the unrelated mean effects model
-
unrelated_effects_plot()
- End-user-ready results for unrelated trial effects model
-
weight_defined()
- Preparing the study weights based on Gower's dissimilarities (Transitivity evaluation)