Skip to contents

Performs a one-stage pairwise or network meta-regression while addressing aggregate binary or continuous missing participant outcome data via the pattern-mixture model.

Usage

run_metareg(
  full,
  covariate,
  covar_assumption,
  cov_value,
  n_chains,
  n_iter,
  n_burnin,
  n_thin,
  inits = NULL
)

Arguments

full

An object of S3 class run_model. See 'Value' in run_model.

covariate

A numeric vector or matrix for a trial-specific covariate that is a potential effect modifier. See 'Details'.

covar_assumption

Character string indicating the structure of the intervention-by-covariate interaction, as described in Cooper et al. (2009). Set covar_assumption equal to "exchangeable", "independent", or "common".

cov_value

Numeric for the covariate value of interest.

n_chains

Positive integer specifying the number of chains for the MCMC sampling; an argument of the jags function of the R-package R2jags. The default argument is 2.

n_iter

Positive integer specifying the number of Markov chains for the MCMC sampling; an argument of the jags function of the R-package R2jags. The default argument is 10000.

n_burnin

Positive integer specifying the number of iterations to discard at the beginning of the MCMC sampling; an argument of the jags function of the R-package R2jags. The default argument is 1000.

n_thin

Positive integer specifying the thinning rate for the MCMC sampling; an argument of the jags function of the R-package R2jags. The default argument is 1.

inits

A list with the initial values for the parameters; an argument of the jags function of the R-package R2jags. The default argument is NULL, and JAGS generates the initial values.

Value

A list of R2jags outputs on the summaries of the posterior distribution, and the Gelman-Rubin convergence diagnostic (Gelman et al., 1992) for the following monitored parameters for a fixed-effect pairwise meta-analysis:

EM

The estimated summary effect measure (according to the argument measure defined in run_model).

beta_all

The estimated regression coefficient for all possible pairwise comparisons according to the argument covar_assumption.

dev_o

The deviance contribution of each trial-arm based on the observed outcome.

hat_par

The fitted outcome at each trial-arm.

phi

The informative missingness parameter.

For a fixed-effect network meta-analysis, the output additionally includes:

SUCRA

The surface under the cumulative ranking (SUCRA) curve for each intervention.

effectiveneness

The ranking probability of each intervention for every rank.

For a random-effects pairwise meta-analysis, the output additionally includes the following elements:

EM_pred

The predicted summary effect measure (according to the argument measure defined in run_model).

delta

The estimated trial-specific effect measure (according to the argument measure defined in run_model). For a multi-arm trial, we estimate T-1 effects, where T is the number of interventions in the trial.

tau

The between-trial standard deviation.

In network meta-analysis, EM and EM_pred refer to all possible pairwise comparisons of interventions in the network. Furthermore, tau is typically assumed to be common for all observed comparisons in the network. For a multi-arm trial, we estimate a total T-1 of delta for comparisons with the baseline intervention of the trial (found in the first column of the element t), with T being the number of interventions in the trial.

Furthermore, the output includes the following elements:

abs_risk

The adjusted absolute risks for each intervention. This appears only when measure = "OR", measure = "RR", or measure = "RD".

leverage_o

The leverage for the observed outcome at each trial-arm.

sign_dev_o

The sign of the difference between observed and fitted outcome at each trial-arm.

model_assessment

A data-frame on the measures of model assessment: deviance information criterion, number of effective parameters, and total residual deviance.

jagsfit

An object of S3 class jags with the posterior results on all monitored parameters to be used in the mcmc_diagnostics function.

The run_metareg function also returns the arguments data, measure, model, assumption, covariate, covar_assumption, n_chains, n_iter, n_burnin, and n_thin to be inherited by other relevant functions of the package.

Details

run_metareg inherits the arguments data, measure, model, assumption, heter_prior, mean_misspar, var_misspar, D, ref, indic, and base_risk from run_model (now contained in the argument full). This prevents specifying a different Bayesian model from that considered in run_model. Therefore, the user needs first to apply run_model, and then use run_metareg (see 'Examples').

The model runs in JAGS and the progress of the simulation appears on the R console. The output of run_metareg is used as an S3 object by other functions of the package to be processed further and provide an end-user-ready output. The model is updated until convergence using the autojags function of the R-package R2jags with 2 updates and number of iterations and thinning equal to n_iter and n_thin, respectively.

The models described in Spineli et al. (2021), and Spineli (2019) have been extended to incorporate one study-level covariate variable following the assumptions of Cooper et al. (2009) for the structure of the intervention-by-covariate interaction. The covariate can be either a numeric vector or matrix with columns equal to the maximum number of arms in the dataset.

References

Cooper NJ, Sutton AJ, Morris D, Ades AE, Welton NJ. Addressing between-study heterogeneity and inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillation. Stat Med 2009;28(14):1861–81. doi: 10.1002/sim.3594

Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci 1992;7(4):457–72. doi: 10.1214/ss/1177011136

Spineli LM, Kalyvas C, Papadimitropoulou K. Continuous(ly) missing outcome data in network meta-analysis: a one-stage pattern-mixture model approach. Stat Methods Med Res 2021;30(4):958–75. doi: 10.1177/0962280220983544

Spineli LM. An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis. BMC Med Res Methodol 2019;19(1):86. doi: 10.1186/s12874-019-0731-y

See also

Author

Loukia M. Spineli

Examples

data("nma.baker2009")

# Read results from 'run_model' (using the default arguments)
res <- readRDS(system.file('extdata/res_baker.rds', package = 'rnmamod'))

# Publication year
pub_year <- c(1996, 1998, 1999, 2000, 2000, 2001, rep(2002, 5), 2003, 2003,
              rep(2005, 4), 2006, 2006, 2007, 2007)

# \donttest{
# Perform a random-effects network meta-regression (exchangeable structure)
# Note: Ideally, set 'n_iter' to 10000 and 'n_burnin' to 1000
run_metareg(full = res,
            covariate = pub_year,
            covar_assumption = "exchangeable",
            cov_value = 2007,
            n_chains = 3,
            n_iter = 1000,
            n_burnin = 100,
            n_thin = 1)
#> **Fixed baseline risk assigned**
#> JAGS generates initial values for the parameters.
#> Running the model ...
#> module glm loaded
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 100
#>    Unobserved stochastic nodes: 157
#>    Total graph size: 2848
#> 
#> Initializing model
#> 
#> ... Updating the model until convergence
#> $EM
#>                 mean        sd       2.5%         25%          50%         75%
#> EM[2,1] -0.729435003 0.6503978 -1.9687503 -1.13586251 -0.771617778 -0.35746638
#> EM[3,1] -0.499647725 0.5783115 -1.7234890 -0.81462697 -0.476233039 -0.17373350
#> EM[4,1]  0.249373776 0.5314885 -0.6354726 -0.13960366  0.151178898  0.59793872
#> EM[5,1] -0.385859161 0.3268929 -1.1050041 -0.58772921 -0.373420563 -0.17260650
#> EM[6,1]  0.256669925 0.3804950 -0.4884441  0.03430182  0.247138996  0.48291713
#> EM[7,1] -0.196284766 0.2673986 -0.7698049 -0.36477101 -0.168228147 -0.01424160
#> EM[8,1] -0.396273716 0.2172388 -0.9145840 -0.51530506 -0.380928555 -0.25116335
#> EM[3,2]  0.229787278 0.7357732 -1.3351591 -0.16882263  0.236610329  0.66036895
#> EM[4,2]  0.978808779 0.7575542 -0.5133579  0.53032841  1.012990940  1.43064267
#> EM[5,2]  0.343575842 0.6997511 -1.1389424 -0.02441668  0.384969465  0.76334412
#> EM[6,2]  0.986104928 0.6697239 -0.2465141  0.58663881  0.995375900  1.36729122
#> EM[7,2]  0.533150237 0.6588538 -0.7432320  0.14320849  0.561853479  0.93294916
#> EM[8,2]  0.333161287 0.6409854 -0.9128291 -0.04485234  0.367312574  0.74607531
#> EM[4,3]  0.749021501 0.7341915 -0.5387650  0.26878950  0.690346545  1.19557714
#> EM[5,3]  0.113788563 0.6356688 -1.1884277 -0.22524774  0.118699275  0.45808291
#> EM[6,3]  0.756317649 0.6292665 -0.3936704  0.37628749  0.710663658  1.09843854
#> EM[7,3]  0.303362959 0.5978402 -0.8148756 -0.04888408  0.289451342  0.63105462
#> EM[8,3]  0.103374009 0.5759404 -0.9792351 -0.20925871  0.109778843  0.42816022
#> EM[5,4] -0.635232937 0.5961787 -2.0228468 -1.00417605 -0.537227580 -0.18181651
#> EM[6,4]  0.007296149 0.5540643 -1.1088495 -0.35146826  0.078631859  0.37507647
#> EM[7,4] -0.445658542 0.5205958 -1.5326042 -0.78133794 -0.354732170 -0.08354931
#> EM[8,4] -0.645647492 0.5420611 -1.7930329 -1.01905671 -0.528778757 -0.25615695
#> EM[6,5]  0.642529086 0.4902803 -0.2033832  0.30365174  0.607692948  0.89902809
#> EM[7,5]  0.189574396 0.3762033 -0.5385315 -0.03756531  0.174289333  0.40758274
#> EM[8,5] -0.010414554 0.3507139 -0.7081721 -0.22598988 -0.005159035  0.20396110
#> EM[7,6] -0.452954691 0.3934545 -1.3320143 -0.67759939 -0.417562044 -0.20368728
#> EM[8,6] -0.652943641 0.3836742 -1.4840857 -0.88406625 -0.625768729 -0.39291759
#> EM[8,7] -0.199988950 0.2789481 -0.7925469 -0.36563333 -0.184335951 -0.02270990
#>               97.5%     Rhat n.eff
#> EM[2,1]  0.48604331 1.063367    50
#> EM[3,1]  0.54951419 1.016718  3000
#> EM[4,1]  1.32533409 1.752403     6
#> EM[5,1]  0.20555476 1.010263   500
#> EM[6,1]  1.05379125 1.027366   140
#> EM[7,1]  0.26580005 1.047246    48
#> EM[8,1] -0.02613156 1.026545   150
#> EM[3,2]  1.62286203 1.052629    59
#> EM[4,2]  2.45934599 1.199199    16
#> EM[5,2]  1.60667677 1.046607    71
#> EM[6,2]  2.38407565 1.036323   120
#> EM[7,2]  1.75516494 1.042505    72
#> EM[8,2]  1.46822040 1.048321    67
#> EM[4,3]  2.37965317 1.345067    10
#> EM[5,3]  1.38513785 1.015329   780
#> EM[6,3]  2.16486528 1.013661   260
#> EM[7,3]  1.52618647 1.026702   160
#> EM[8,3]  1.25675326 1.016605   520
#> EM[5,4]  0.24569161 1.483348     8
#> EM[6,4]  1.04167337 1.486034     8
#> EM[7,4]  0.41088328 1.502500     8
#> EM[8,4]  0.17668180 1.582709     7
#> EM[6,5]  1.77161764 1.004233   540
#> EM[7,5]  1.01319535 1.010200   240
#> EM[8,5]  0.71478441 1.000849  3000
#> EM[7,6]  0.24659626 1.009319   260
#> EM[8,6]  0.05420456 1.007780   540
#> EM[8,7]  0.31473915 1.014761   140
#> 
#> $EM_pred
#>                      mean        sd       2.5%         25%          50%
#> EM.pred[2,1] -0.730049187 0.6645377 -1.9894887 -1.13999081 -0.764601014
#> EM.pred[3,1] -0.497743371 0.5914367 -1.7383998 -0.82414591 -0.480715822
#> EM.pred[4,1]  0.251353868 0.5501307 -0.6740911 -0.13337572  0.166326033
#> EM.pred[5,1] -0.387390069 0.3594666 -1.1673583 -0.59498242 -0.369591662
#> EM.pred[6,1]  0.257191814 0.4026155 -0.6024316  0.03023935  0.253943737
#> EM.pred[7,1] -0.196438180 0.3008333 -0.8738566 -0.37278602 -0.162913991
#> EM.pred[8,1] -0.396485273 0.2586813 -1.0340368 -0.52564031 -0.369942060
#> EM.pred[3,2]  0.228752432 0.7479569 -1.3644515 -0.16875576  0.230585941
#> EM.pred[4,2]  0.981533782 0.7711601 -0.5164902  0.51410729  1.028994214
#> EM.pred[5,2]  0.343068614 0.7131618 -1.1821394 -0.03156844  0.368150696
#> EM.pred[6,2]  0.989710149 0.6878080 -0.2442415  0.57992537  0.991740389
#> EM.pred[7,2]  0.533952283 0.6717981 -0.7954658  0.14102066  0.554048445
#> EM.pred[8,2]  0.329857955 0.6535778 -0.9167624 -0.05506854  0.365657950
#> EM.pred[4,3]  0.748295723 0.7463144 -0.5694411  0.26837236  0.694636426
#> EM.pred[5,3]  0.116496351 0.6528435 -1.1628773 -0.24096988  0.118144859
#> EM.pred[6,3]  0.752202832 0.6457451 -0.4326600  0.36464884  0.713287469
#> EM.pred[7,3]  0.305415622 0.6154407 -0.8612226 -0.05887086  0.289863423
#> EM.pred[8,3]  0.099059333 0.5934675 -1.1231271 -0.22269134  0.101901905
#> EM.pred[5,4] -0.633591748 0.6093729 -2.0053989 -1.00564752 -0.539465114
#> EM.pred[6,4]  0.007746378 0.5691488 -1.1445653 -0.37527151  0.064251903
#> EM.pred[7,4] -0.441634698 0.5368390 -1.5412020 -0.79910366 -0.373547262
#> EM.pred[8,4] -0.646960295 0.5640642 -1.8408548 -1.04574057 -0.538264531
#> EM.pred[6,5]  0.649051456 0.5077806 -0.2338661  0.30640210  0.621930726
#> EM.pred[7,5]  0.186507875 0.4034124 -0.6084475 -0.05226965  0.174045495
#> EM.pred[8,5] -0.007523143 0.3765943 -0.7645108 -0.22775943 -0.007060713
#> EM.pred[7,6] -0.454166936 0.4157170 -1.3673168 -0.68936697 -0.413404297
#> EM.pred[8,6] -0.653521150 0.4077004 -1.5547260 -0.89074150 -0.630939570
#> EM.pred[8,7] -0.199525081 0.3152715 -0.8730581 -0.38131477 -0.180651521
#>                       75%      97.5%     Rhat n.eff
#> EM.pred[2,1] -0.343004931 0.50652046 1.060663    49
#> EM.pred[3,1] -0.157951436 0.58692819 1.012594  3000
#> EM.pred[4,1]  0.609335587 1.34859531 1.664446     6
#> EM.pred[5,1] -0.158921936 0.27899249 1.005454   570
#> EM.pred[6,1]  0.492383507 1.07956303 1.026058   150
#> EM.pred[7,1]  0.001793153 0.31945814 1.037242    61
#> EM.pred[8,1] -0.228074207 0.02292974 1.016640   310
#> EM.pred[3,2]  0.672851431 1.66265942 1.048272    61
#> EM.pred[4,2]  1.438863336 2.48326902 1.185544    17
#> EM.pred[5,2]  0.764436150 1.63888002 1.043009    76
#> EM.pred[6,2]  1.387231717 2.44064826 1.032273   120
#> EM.pred[7,2]  0.944020335 1.80743174 1.037229    81
#> EM.pred[8,2]  0.750587196 1.52578082 1.042844    74
#> EM.pred[4,3]  1.197357120 2.38840800 1.340116    10
#> EM.pred[5,3]  0.474044781 1.43956668 1.012272  1200
#> EM.pred[6,3]  1.102079224 2.20126187 1.011676   270
#> EM.pred[7,3]  0.650706205 1.60298470 1.022499   170
#> EM.pred[8,3]  0.423536601 1.29322085 1.011917   470
#> EM.pred[5,4] -0.186175407 0.31202304 1.457100     8
#> EM.pred[6,4]  0.391676006 1.06573094 1.445999     8
#> EM.pred[7,4] -0.067935455 0.49081691 1.460969     8
#> EM.pred[8,4] -0.244332340 0.24695693 1.512820     8
#> EM.pred[6,5]  0.915602841 1.79203683 1.003595   650
#> EM.pred[7,5]  0.429510063 1.04912701 1.008441   250
#> EM.pred[8,5]  0.227286155 0.76524814 1.001049  3000
#> EM.pred[7,6] -0.189866355 0.31484187 1.011234   270
#> EM.pred[8,6] -0.384213101 0.09864744 1.008138   650
#> EM.pred[8,7] -0.005789033 0.39034130 1.014241   200
#> 
#> $tau
#>         mean           sd         2.5%          25%          50%          75% 
#>  0.108497520  0.090433968  0.001108875  0.035241894  0.091310230  0.157859907 
#>        97.5%         Rhat        n.eff 
#>  0.331977064  1.393179206 10.000000000 
#> 
#> $delta
#>                    mean        sd       2.5%        25%         50%         75%
#> delta[1,2]  -0.03666252 0.3671547 -0.6985702 -0.2779142 -0.07863899  0.17381236
#> delta[2,2]  -0.01995656 0.3513376 -0.6311290 -0.2573534 -0.07485724  0.18009893
#> delta[3,2]  -0.40540396 0.1951379 -0.8575906 -0.5274179 -0.34316298 -0.28303923
#> delta[4,2]  -0.42656192 0.1533086 -0.7654390 -0.5090336 -0.42754156 -0.33303933
#> delta[5,2]  -0.38604907 0.2013007 -0.8825714 -0.4931159 -0.33219321 -0.26982550
#> delta[6,2]  -0.31709022 0.1738810 -0.6948514 -0.4032870 -0.31635423 -0.22639496
#> delta[7,2]  -0.42625570 0.1470359 -0.7557065 -0.5067459 -0.42847519 -0.33568011
#> delta[8,2]  -0.35748003 0.1556953 -0.7050633 -0.4505636 -0.33067499 -0.26848170
#> delta[9,2]  -0.38196524 0.1655654 -0.7557501 -0.4852478 -0.33748545 -0.27846551
#> delta[10,2]  0.01918402 0.3321292 -0.5077400 -0.2275514 -0.03936241  0.23379499
#> delta[11,2] -0.08546597 0.2351902 -0.6334482 -0.1854344 -0.08777725  0.07333137
#> delta[12,2] -0.01031824 0.3254795 -0.5320622 -0.2426536 -0.06404836  0.17432771
#> delta[13,2] -0.94716172 0.4784875 -1.8278531 -1.2852386 -0.95394823 -0.70396411
#> delta[14,2] -0.10084250 0.1881128 -0.5263019 -0.2029342 -0.09484789  0.01769397
#> delta[15,2] -0.03417926 0.2348046 -0.5275008 -0.1802475 -0.04679128  0.13168386
#> delta[16,2] -0.34841372 0.1343871 -0.5922585 -0.4332615 -0.36619611 -0.26057055
#> delta[17,2] -0.43076907 0.2606703 -1.0082516 -0.5919781 -0.39453021 -0.25100028
#> delta[18,2] -0.44590175 0.2576942 -1.0714160 -0.5731167 -0.41638305 -0.29276769
#> delta[19,2] -0.43473977 0.2624816 -1.0734605 -0.5662827 -0.41363847 -0.27104078
#> delta[20,2] -0.35639088 0.1817216 -0.7385309 -0.4572196 -0.33064716 -0.26170713
#> delta[21,2] -0.49332789 0.1961291 -0.9632462 -0.5938534 -0.44665297 -0.37752486
#> delta[9,3]  -0.47686950 0.1704262 -0.8855238 -0.5694134 -0.44055742 -0.37882920
#> delta[10,3] -0.40460159 0.2386957 -0.9448530 -0.5494874 -0.40690710 -0.26814281
#> delta[12,3] -0.34039359 0.2227411 -0.7802065 -0.4641617 -0.36016071 -0.19804722
#> delta[13,3] -0.70786562 0.3746683 -1.5569635 -0.9175235 -0.63705529 -0.49918661
#> delta[19,3] -0.40247564 0.2111696 -0.9416662 -0.5053247 -0.33828296 -0.27770649
#> delta[10,4] -0.38408028 0.1919511 -0.8377807 -0.4924685 -0.33371593 -0.27162555
#> delta[12,4] -0.31222668 0.1778883 -0.6665428 -0.3993491 -0.31371927 -0.22178013
#> delta[13,4] -0.12332463 0.2844940 -0.8256120 -0.2322746 -0.11383844  0.07278284
#>                    97.5%     Rhat n.eff
#> delta[1,2]   0.593325080 1.707167     6
#> delta[2,2]   0.595622704 1.764335     6
#> delta[3,2]  -0.096783308 1.037293    60
#> delta[4,2]  -0.134565926 1.053679    95
#> delta[5,2]  -0.054857874 1.042353    66
#> delta[6,2]   0.032131124 1.010927   790
#> delta[7,2]  -0.140375826 1.079237    49
#> delta[8,2]  -0.079594806 1.031057    86
#> delta[9,2]  -0.096753842 1.047425    62
#> delta[10,2]  0.601475942 1.788978     6
#> delta[11,2]  0.311966443 1.066593    73
#> delta[12,2]  0.589608060 1.797576     6
#> delta[13,2]  0.020328270 1.157857    23
#> delta[14,2]  0.236885663 1.037107    75
#> delta[15,2]  0.407918651 1.108528    26
#> delta[16,2] -0.066583018 1.188432    16
#> delta[17,2]  0.040419869 1.057398    59
#> delta[18,2]  0.009745178 1.127638    28
#> delta[19,2]  0.009004351 1.126696    28
#> delta[20,2] -0.016212477 1.079506    38
#> delta[21,2] -0.172104551 1.036298   140
#> delta[9,3]  -0.180393056 1.042533   160
#> delta[10,3]  0.071918681 1.136710    27
#> delta[12,3]  0.105217355 1.105269    38
#> delta[13,3] -0.047446630 1.047107   130
#> delta[19,3] -0.084471694 1.078500    40
#> delta[10,4] -0.068387376 1.063073    42
#> delta[12,4]  0.070433845 1.021810   260
#> delta[13,4]  0.316615788 1.056904   110
#> 
#> $beta_all
#>                       mean         sd        2.5%           25%           50%
#> beta.all[2,1]  0.042799399 0.11350397 -0.15904580 -0.0101841057  0.0327067774
#> beta.all[3,1]  0.040502108 0.11234257 -0.17853450 -0.0109002716  0.0348735949
#> beta.all[4,1]  0.062074961 0.06161934 -0.03893218  0.0171467503  0.0550866708
#> beta.all[5,1]  0.004291932 0.07374653 -0.16114654 -0.0342057968  0.0109012189
#> beta.all[6,1]  0.073888145 0.07865226 -0.05353327  0.0183791267  0.0614074076
#> beta.all[7,1]  0.039202229 0.04447327 -0.04653872  0.0086341700  0.0398037019
#> beta.all[8,1]  0.011456614 0.03906117 -0.07388233 -0.0128829423  0.0139060880
#> beta.all[3,2] -0.002297291 0.13666427 -0.29496875 -0.0452258020  0.0005657622
#> beta.all[4,2]  0.019275562 0.11536323 -0.19819400 -0.0234880284  0.0083376838
#> beta.all[5,2] -0.038507467 0.12970364 -0.36087105 -0.0800090410 -0.0141446981
#> beta.all[6,2]  0.031088746 0.12365405 -0.19781610 -0.0164387412  0.0123455504
#> beta.all[7,2] -0.003597171 0.11475109 -0.24482670 -0.0406406047  0.0005503331
#> beta.all[8,2] -0.031342785 0.11364845 -0.28282767 -0.0742749894 -0.0132393267
#> beta.all[4,3]  0.021572853 0.11475398 -0.20835618 -0.0204705047  0.0091547793
#> beta.all[5,3] -0.036210176 0.12525849 -0.33937051 -0.0748174991 -0.0137417491
#> beta.all[6,3]  0.033386037 0.11787859 -0.18834239 -0.0163079126  0.0121605247
#> beta.all[7,3] -0.001299880 0.11343619 -0.23974800 -0.0402042825  0.0007024250
#> beta.all[8,3] -0.029045494 0.11402253 -0.29838917 -0.0705981928 -0.0130272298
#> beta.all[5,4] -0.057783029 0.09052665 -0.27916646 -0.1030367790 -0.0327432045
#> beta.all[6,4]  0.011813184 0.07380397 -0.13486725 -0.0240300069  0.0036294419
#> beta.all[7,4] -0.022872732 0.06253741 -0.16468554 -0.0556909704 -0.0111671203
#> beta.all[8,4] -0.050618347 0.06683955 -0.21360977 -0.0891991631 -0.0351208785
#> beta.all[6,5]  0.069596213 0.10758082 -0.08792114  0.0003751031  0.0400843192
#> beta.all[7,5]  0.034910297 0.07647225 -0.09642407 -0.0074365151  0.0168237418
#> beta.all[8,5]  0.007164682 0.07526842 -0.14461670 -0.0279100925  0.0013596947
#> beta.all[7,6] -0.034685916 0.07722660 -0.21864100 -0.0712323528 -0.0174616036
#> beta.all[8,6] -0.062431531 0.08084376 -0.25528347 -0.1101014297 -0.0441819568
#> beta.all[8,7] -0.027745614 0.04944595 -0.14204516 -0.0536344630 -0.0210261434
#>                        75%      97.5%     Rhat n.eff
#> beta.all[2,1]  0.090176126 0.27869028 1.074789   180
#> beta.all[3,1]  0.086245773 0.28438198 1.051986   220
#> beta.all[4,1]  0.102283958 0.19576931 1.265702    12
#> beta.all[5,1]  0.051021045 0.13515305 1.042187    70
#> beta.all[6,1]  0.119092092 0.26067667 1.077784    32
#> beta.all[7,1]  0.069037514 0.12340608 1.053976    45
#> beta.all[8,1]  0.038250270 0.08412452 1.062608    38
#> beta.all[3,2]  0.041677800 0.27987654 1.057677   840
#> beta.all[4,2]  0.061428124 0.25157626 1.096902    91
#> beta.all[5,2]  0.015820897 0.18031732 1.075551   250
#> beta.all[6,2]  0.074872491 0.31494668 1.065741   160
#> beta.all[7,2]  0.037118570 0.22047273 1.076866  3000
#> beta.all[8,2]  0.014758558 0.17153462 1.062837  1100
#> beta.all[4,3]  0.065844668 0.27611139 1.091467    48
#> beta.all[5,3]  0.017389330 0.17435947 1.049622  1300
#> beta.all[6,3]  0.073594247 0.31203460 1.063406    68
#> beta.all[7,3]  0.038380621 0.24473468 1.057552   680
#> beta.all[8,3]  0.016591394 0.18867553 1.037122   310
#> beta.all[5,4]  0.001789437 0.07796797 1.153417    21
#> beta.all[6,4]  0.042805616 0.18943113 1.014252   150
#> beta.all[7,4]  0.011830291 0.08532219 1.123430    23
#> beta.all[8,4] -0.002146577 0.04804405 1.083339    30
#> beta.all[6,5]  0.119733482 0.34363692 1.068204    37
#> beta.all[7,5]  0.073325841 0.22053227 1.040714    97
#> beta.all[8,5]  0.039544765 0.17632262 1.043281    60
#> beta.all[7,6]  0.009288612 0.09882743 1.042079    58
#> beta.all[8,6] -0.002823470 0.06294511 1.026711    90
#> beta.all[8,7]  0.002394307 0.05923014 1.009713   460
#> 
#> $dev_o
#>                  mean        sd         2.5%        25%       50%       75%
#> dev.o[1,1]  2.2214220 2.3698212 0.0062698751 0.46162257 1.4789441 3.2117888
#> dev.o[2,1]  0.8851547 1.2543520 0.0010607761 0.10371402 0.4268069 1.1662004
#> dev.o[3,1]  0.9970860 1.3807321 0.0011284473 0.10491616 0.4664472 1.3638745
#> dev.o[4,1]  0.7367308 1.0503955 0.0008928605 0.07623352 0.3440283 0.9860794
#> dev.o[5,1]  0.6519865 0.9123293 0.0006521370 0.07056914 0.2916027 0.8724345
#> dev.o[6,1]  1.0602205 1.3578373 0.0018975656 0.12674692 0.5568093 1.4679218
#> dev.o[7,1]  0.7720774 1.0912046 0.0007724435 0.08692880 0.3582633 1.0182024
#> dev.o[8,1]  0.7135708 0.9804396 0.0007249771 0.07379909 0.3266334 0.9843072
#> dev.o[9,1]  0.7517926 0.9722605 0.0010973285 0.09885384 0.3889992 1.0640587
#> dev.o[10,1] 0.5518217 0.7952398 0.0005860718 0.05762894 0.2511324 0.7071539
#> dev.o[11,1] 0.7834200 1.0848875 0.0011313150 0.08007218 0.3627560 1.0682785
#> dev.o[12,1] 1.0121390 1.2378190 0.0012230730 0.13386717 0.5577003 1.4558975
#> dev.o[13,1] 1.2127593 1.5163832 0.0018930216 0.14481897 0.6232805 1.7273452
#> dev.o[14,1] 0.8196385 1.1755660 0.0006645356 0.08146076 0.3581395 1.1216390
#> dev.o[15,1] 0.7730625 1.1741824 0.0006936346 0.07994537 0.3480782 0.9624748
#> dev.o[16,1] 1.1611050 1.5357042 0.0015715411 0.12993090 0.5753501 1.5858845
#> dev.o[17,1] 1.8295376 2.0857015 0.0050541055 0.31276211 1.1029065 2.6070996
#> dev.o[18,1] 1.3323629 1.7366129 0.0022158169 0.17836689 0.6726152 1.8847664
#> dev.o[19,1] 1.9620689 1.9230671 0.0105966491 0.54873112 1.4271085 2.8352531
#> dev.o[20,1] 0.7846868 1.0605971 0.0006714862 0.08047914 0.3705285 1.0657893
#> dev.o[21,1] 1.4697381 1.7768939 0.0012057143 0.19852173 0.8025994 2.0929793
#> dev.o[1,2]  2.9156959 1.8274464 0.4900216680 1.56446624 2.5332250 3.8461025
#> dev.o[2,2]  0.8817099 1.2366640 0.0006383413 0.09449104 0.4106495 1.1983141
#> dev.o[3,2]  0.9679059 1.2979912 0.0011937717 0.10520160 0.4475943 1.3144840
#> dev.o[4,2]  0.7971286 1.1008413 0.0007025422 0.08456882 0.3767106 1.0756796
#> dev.o[5,2]  0.5657664 0.7646542 0.0005388765 0.06269112 0.2615280 0.7417538
#> dev.o[6,2]  1.1177573 1.4283180 0.0018343311 0.14894987 0.6119990 1.5254368
#> dev.o[7,2]  0.8453473 1.1735908 0.0008836089 0.08969180 0.4064889 1.0887424
#> dev.o[8,2]  0.6598539 0.9138559 0.0007221064 0.06753587 0.3006361 0.8848252
#> dev.o[9,2]  0.5793267 0.8634468 0.0004467595 0.04904967 0.2512690 0.7496885
#> dev.o[10,2] 1.7457183 1.9270327 0.0034920380 0.28581567 1.1056553 2.5368238
#> dev.o[11,2] 0.8618727 1.1870325 0.0009851915 0.09228321 0.3976239 1.1782580
#> dev.o[12,2] 1.3450177 1.8091453 0.0016278602 0.15431134 0.6564665 1.8231816
#> dev.o[13,2] 1.0183165 1.4131683 0.0010172846 0.10679413 0.4745439 1.3746830
#> dev.o[14,2] 0.6982708 1.0009092 0.0007578728 0.07129284 0.3212411 0.9332866
#> dev.o[15,2] 0.8187259 1.1285781 0.0006575196 0.08303286 0.3708326 1.1110285
#> dev.o[16,2] 1.2831329 1.7273247 0.0015829960 0.12894011 0.6438267 1.7464514
#> dev.o[17,2] 1.9451923 1.8656255 0.0078633336 0.50632339 1.4567549 2.8013188
#> dev.o[18,2] 1.3231498 1.6748932 0.0015156613 0.17265002 0.7057163 1.8404999
#> dev.o[19,2] 0.4339815 0.6327221 0.0004364867 0.04074738 0.1934889 0.5537370
#> dev.o[20,2] 0.7569258 1.0521804 0.0007729704 0.07752777 0.3569683 1.0000392
#> dev.o[21,2] 1.3362382 1.6172502 0.0016235305 0.19318759 0.7158192 1.9474032
#> dev.o[9,3]  0.8230240 1.1186751 0.0008370616 0.07873315 0.3864652 1.1357866
#> dev.o[10,3] 0.7998405 1.0907484 0.0008374860 0.08924996 0.3827147 1.0538803
#> dev.o[12,3] 1.3504422 1.6080470 0.0017837389 0.17423363 0.7540027 2.0000595
#> dev.o[13,3] 0.9738865 1.4177344 0.0009420259 0.09851998 0.4396986 1.2711752
#> dev.o[19,3] 1.7166830 1.3399792 0.0657454424 0.70272504 1.4044130 2.4051202
#> dev.o[10,4] 1.0817841 1.4214219 0.0018108541 0.13585731 0.5615902 1.4809173
#> dev.o[12,4] 1.0077731 1.3004726 0.0015635868 0.11882329 0.5274342 1.3723292
#> dev.o[13,4] 1.0572039 1.4350090 0.0009165133 0.11533966 0.4888516 1.4134509
#>                97.5%     Rhat n.eff
#> dev.o[1,1]  8.505582 1.001145  3000
#> dev.o[2,1]  4.068134 1.004568   490
#> dev.o[3,1]  4.797714 1.001945  1900
#> dev.o[4,1]  3.518137 1.005404   410
#> dev.o[5,1]  3.139039 1.004810   940
#> dev.o[6,1]  4.895161 1.004174   870
#> dev.o[7,1]  3.918647 1.002570   970
#> dev.o[8,1]  3.427029 1.002024  1800
#> dev.o[9,1]  3.231570 1.000921  3000
#> dev.o[10,1] 2.732416 1.004201   540
#> dev.o[11,1] 3.859736 1.004723   480
#> dev.o[12,1] 4.515631 1.017383   120
#> dev.o[13,1] 5.518192 1.007933   270
#> dev.o[14,1] 3.933895 1.000923  3000
#> dev.o[15,1] 4.062150 1.003295   780
#> dev.o[16,1] 5.476054 1.013236   160
#> dev.o[17,1] 7.478078 1.011292   370
#> dev.o[18,1] 6.040120 1.010288   320
#> dev.o[19,1] 6.731106 1.006328   350
#> dev.o[20,1] 3.854885 1.001559  2700
#> dev.o[21,1] 6.597428 1.008264   410
#> dev.o[1,2]  7.509524 1.005417   420
#> dev.o[2,2]  4.167298 1.001401  2900
#> dev.o[3,2]  4.627518 1.000714  3000
#> dev.o[4,2]  3.797653 1.000542  3000
#> dev.o[5,2]  2.824957 1.000725  3000
#> dev.o[6,2]  5.357228 1.003940   840
#> dev.o[7,2]  4.256407 1.001312  2500
#> dev.o[8,2]  3.185609 1.001369  3000
#> dev.o[9,2]  2.940834 1.003000   800
#> dev.o[10,2] 6.941381 1.015431   150
#> dev.o[11,2] 4.179654 1.000790  3000
#> dev.o[12,2] 6.436374 1.073782    33
#> dev.o[13,2] 5.101005 1.009181   420
#> dev.o[14,2] 3.284667 1.004866   490
#> dev.o[15,2] 3.996256 1.001602  1800
#> dev.o[16,2] 6.038884 1.004511   500
#> dev.o[17,2] 6.688959 1.002322  1500
#> dev.o[18,2] 6.065805 1.004783   470
#> dev.o[19,2] 2.217057 1.000769  3000
#> dev.o[20,2] 3.703744 1.001048  3000
#> dev.o[21,2] 5.779020 1.007199   300
#> dev.o[9,3]  4.038421 1.008963   260
#> dev.o[10,3] 4.001643 1.000985  3000
#> dev.o[12,3] 5.640320 1.008813   240
#> dev.o[13,3] 4.754018 1.001016  3000
#> dev.o[19,3] 5.174523 1.003022   790
#> dev.o[10,4] 5.003209 1.001706  3000
#> dev.o[12,4] 4.677885 1.016455   140
#> dev.o[13,4] 5.168181 1.000764  3000
#> 
#> $hat_par
#>                     mean         sd        2.5%         25%        50%
#> hat.par[1,1]    1.645532  0.8042964   0.3706083   1.0297573   1.553599
#> hat.par[2,1]   50.213575  4.8553029  41.1553199  46.8844733  50.086022
#> hat.par[3,1]   44.357487  4.5008511  35.8131872  41.2900666  44.278777
#> hat.par[4,1]   42.124349  4.7549798  33.5372228  38.6816226  41.969015
#> hat.par[5,1]   17.315462  2.4455214  12.7325047  15.7055587  17.225086
#> hat.par[6,1]   44.310179  4.0612722  36.5888328  41.5980940  44.340784
#> hat.par[7,1]  157.651576  7.3123613 142.9403693 152.7211196 157.826395
#> hat.par[8,1]   68.178724  5.4747470  57.6761870  64.4086523  68.101056
#> hat.par[9,1]   88.952889  4.6156430  80.6010992  85.6546865  88.786447
#> hat.par[10,1]  78.628450  3.5703936  71.6793011  76.2926527  78.733302
#> hat.par[11,1]  73.820946  5.4481274  63.5315920  70.0091590  73.729462
#> hat.par[12,1]  76.555368  4.1658967  67.7690214  73.7898770  76.723772
#> hat.par[13,1]  49.501743  4.6358146  40.7599573  46.2445423  49.365998
#> hat.par[14,1]  34.819802  4.7956313  26.3354935  31.4484598  34.582057
#> hat.par[15,1]  34.853015  4.5985645  26.0302719  31.7600582  34.791935
#> hat.par[16,1] 303.547787 12.7869385 277.8679686 294.7634187 303.676652
#> hat.par[17,1]  10.931434  2.5326713   6.4840945   9.1730360  10.773055
#> hat.par[18,1]  21.313866  3.4025061  15.1915861  18.9243906  21.198141
#> hat.par[19,1]   3.729726  1.2353189   1.7259047   2.8406204   3.608087
#> hat.par[20,1]  23.519373  3.7347624  16.6927872  20.8788465  23.362276
#> hat.par[21,1]  31.180861  4.5804986  22.8956715  27.9837311  30.897075
#> hat.par[1,2]    1.291049  0.7186943   0.2412969   0.7452067   1.171432
#> hat.par[2,2]   45.612639  4.9795328  36.0670982  42.1379545  45.595770
#> hat.par[3,2]   30.593176  4.0424180  23.1254154  27.7159479  30.450738
#> hat.par[4,2]   43.700687  5.1781810  34.4376050  40.0902564  43.379986
#> hat.par[5,2]   11.670207  2.0713456   7.8428304  10.1786061  11.610687
#> hat.par[6,2]   34.667075  3.8400379  27.1933136  32.0967372  34.516940
#> hat.par[7,2]  196.964361  9.8664120 177.3284794 190.2832755 196.813563
#> hat.par[8,2]   51.931405  4.9270118  42.6222269  48.5892719  51.813052
#> hat.par[9,2]   81.897044  5.2099420  71.6860687  78.5046182  81.918181
#> hat.par[10,2]  72.474025  3.8511008  64.8451323  69.8919939  72.512681
#> hat.par[11,2] 118.257583  8.0135529 103.1272945 112.6335738 118.151909
#> hat.par[12,2]  82.853924  5.1701428  72.7476597  79.3285654  82.940637
#> hat.par[13,2]  25.969584  4.6128097  17.8611563  22.6311191  25.697597
#> hat.par[14,2]  30.941910  4.3303121  22.6469454  28.0206966  30.879254
#> hat.par[15,2]  34.012742  4.6069471  25.6547324  30.8263282  33.729955
#> hat.par[16,2] 247.428937 12.8026460 223.1496281 238.9299187 247.186545
#> hat.par[17,2]   6.915546  1.8806025   3.8133244   5.5296231   6.775397
#> hat.par[18,2]  13.623732  2.7429083   8.6882857  11.7002171  13.480012
#> hat.par[19,2]   2.524280  0.9642596   1.0397633   1.8434411   2.397829
#> hat.par[20,2]  20.448314  3.5661775  14.1702621  17.8737255  20.286419
#> hat.par[21,2]  22.644623  3.7786338  15.6203275  20.0180422  22.472302
#> hat.par[9,3]   80.028300  5.5118099  69.1843919  76.3873560  80.079723
#> hat.par[10,3]  69.192124  4.4345675  60.3229319  66.2134519  69.343748
#> hat.par[12,3]  66.485722  4.6476904  57.7405570  63.1721041  66.444795
#> hat.par[13,3]  34.957652  5.0764080  25.6520786  31.4721882  34.807435
#> hat.par[19,3]   2.780091  0.9763609   1.2296995   2.0673212   2.653697
#> hat.par[10,4]  66.615147  4.1026809  58.4273957  63.9485788  66.638357
#> hat.par[12,4]  61.716859  4.3958045  53.2456183  58.7376941  61.652106
#> hat.par[13,4]  41.162314  4.5918033  32.6303429  38.0365020  40.981381
#>                      75%      97.5%     Rhat n.eff
#> hat.par[1,1]    2.165492   3.417422 1.002672  1200
#> hat.par[2,1]   53.530542  59.688060 1.014653   160
#> hat.par[3,1]   47.356337  53.354388 1.003333   710
#> hat.par[4,1]   45.232578  51.810442 1.014103   220
#> hat.par[5,1]   18.951367  22.317415 1.003437   680
#> hat.par[6,1]   47.012432  52.334297 1.005819   390
#> hat.par[7,1]  162.422075 171.926179 1.012969   190
#> hat.par[8,1]   71.827350  78.670440 1.001313  2500
#> hat.par[9,1]   92.028532  98.269368 1.003764  1700
#> hat.par[10,1]  81.136445  85.488257 1.004370   910
#> hat.par[11,1]  77.382076  84.796859 1.023641    92
#> hat.par[12,1]  79.447279  84.435463 1.028511    76
#> hat.par[13,1]  52.549086  59.000681 1.008418   250
#> hat.par[14,1]  37.813879  44.963970 1.004055   890
#> hat.par[15,1]  37.792150  44.272782 1.005269   680
#> hat.par[16,1] 312.228448 328.314251 1.017235   130
#> hat.par[17,1]  12.507449  16.337324 1.003582   650
#> hat.par[18,1]  23.453599  28.375566 1.009078   280
#> hat.par[19,1]   4.447244   6.604263 1.014520   150
#> hat.par[20,1]  25.990567  31.026305 1.005398   410
#> hat.par[21,1]  34.037971  40.753374 1.020919   100
#> hat.par[1,2]    1.709377   2.996707 1.005696   410
#> hat.par[2,2]   48.945572  55.251230 1.007626   280
#> hat.par[3,2]   33.288401  38.757492 1.006139   360
#> hat.par[4,2]   47.031404  54.563025 1.021058   100
#> hat.par[5,2]   13.081433  15.987222 1.002312  1100
#> hat.par[6,2]   37.096962  42.347013 1.004509   500
#> hat.par[7,2]  203.689785 216.592742 1.003959   580
#> hat.par[8,2]   55.303736  61.656442 1.005630   390
#> hat.par[9,2]   85.373752  92.039267 1.014978   160
#> hat.par[10,2]  75.161813  79.806511 1.023089    91
#> hat.par[11,2] 123.731146 133.628032 1.005539   400
#> hat.par[12,2]  86.359017  92.898559 1.167660    17
#> hat.par[13,2]  28.867671  35.623577 1.019505   110
#> hat.par[14,2]  33.728089  39.836873 1.002776  3000
#> hat.par[15,2]  36.930220  43.681606 1.003651   960
#> hat.par[16,2] 255.758547 273.659799 1.012825   160
#> hat.par[17,2]   8.078909  10.979520 1.001743  1600
#> hat.par[18,2]  15.373285  19.418690 1.007794   320
#> hat.par[19,2]   3.073810   4.757148 1.000985  3000
#> hat.par[20,2]  22.734823  27.832757 1.015858   130
#> hat.par[21,2]  25.193412  30.366516 1.018476   120
#> hat.par[9,3]   83.706966  90.928564 1.009092   290
#> hat.par[10,3]  72.218786  77.841066 1.012903   170
#> hat.par[12,3]  69.684089  75.598894 1.024554    87
#> hat.par[13,3]  38.271589  45.333218 1.002980  1400
#> hat.par[19,3]   3.365702   5.056336 1.003910   590
#> hat.par[10,4]  69.302772  74.652831 1.003518  1200
#> hat.par[12,4]  64.627508  70.437080 1.033845    64
#> hat.par[13,4]  44.146272  50.571836 1.001264  2600
#> 
#> $leverage_o
#>  [1] 0.9512263 0.8628494 0.7492911 0.6968182 0.6061131 0.6320113 0.7347895
#>  [8] 0.7128138 0.5231546 0.5459165 0.7486693 0.5946680 0.7809059 0.7744821
#> [15] 0.7469398 0.8585851 0.8710186 0.8529914 0.7029638 0.7722858 0.9073680
#> [22] 0.2204327 0.8686070 0.6717592 0.7512995 0.5107867 0.6574475 0.8361703
#> [29] 0.6597269 0.5791019 0.6800805 0.8411012 0.8795405 1.0182725 0.6659966
#> [36] 0.7838734 0.9564816 0.3590982 0.6330153 0.3118041 0.7449671 0.6326352
#> [43] 0.6305223 0.7470318 0.6930533 0.9738195 0.1446909 0.6183202 0.6476216
#> [50] 0.7045692
#> 
#> $sign_dev_o
#>  [1]  1  1  1 -1  1 -1 -1 -1  1  1  1 -1  1  1 -1 -1  1  1  1  1  1 -1 -1 -1  1
#> [26] -1  1  1  1  1  1 -1 -1  1 -1  1  1 -1 -1 -1 -1 -1 -1 -1  1  1 -1 -1  1 -1
#> 
#> $phi
#>               mean        sd       2.5%        25%          50%        75%
#> phi[1] -0.46770528 0.4999260 -1.4646079 -0.7924920 -0.475565744 -0.1540572
#> phi[2]  0.02706911 0.9718686 -1.8933643 -0.6163584 -0.017167779  0.6838166
#> phi[3] -0.03892657 0.9221614 -1.8807181 -0.6555248 -0.005328918  0.5781910
#> phi[4] -0.71941124 0.9412443 -2.3217384 -1.3794474 -0.847026776 -0.1257983
#> phi[5] -0.63691556 0.7789958 -2.1510050 -1.1372134 -0.654635608 -0.1199179
#> phi[6]  0.82935369 0.7721105 -0.7683285  0.3274474  0.820369745  1.3687453
#> phi[7] -0.21498128 0.6667186 -1.5407708 -0.6378254 -0.205403080  0.2004087
#> phi[8] -0.10497462 0.9366665 -1.9148632 -0.7236395 -0.118958338  0.5148549
#>            97.5%     Rhat n.eff
#> phi[1] 0.5901206 1.036076    88
#> phi[2] 2.0073829 1.078409    32
#> phi[3] 1.7046509 1.021576   110
#> phi[4] 1.2846678 1.502418     8
#> phi[5] 0.9516481 1.029527    86
#> phi[6] 2.2708177 1.044422    58
#> phi[7] 1.1348523 1.003755   630
#> phi[8] 1.7661186 1.060396    40
#> 
#> $model_assessment
#>        DIC       pD      dev
#> 1 89.23774 35.04769 54.19005
#> 
#> $measure
#> [1] "OR"
#> 
#> $model
#> [1] "RE"
#> 
#> $assumption
#> [1] "IDE-ARM"
#> 
#> $covariate
#>  [1] 1996 1998 1999 2000 2000 2001 2002 2002 2002 2002 2002 2003 2003 2005 2005
#> [16] 2005 2005 2006 2006 2007 2007
#> 
#> $covar_assumption
#> [1] "exchangeable"
#> 
#> $cov_value
#> [1] 2007
#> 
#> $jagsfit
#> Inference for Bugs model at "4", fit using jags,
#>  3 chains, each with 1000 iterations (first 0 discarded)
#>  n.sims = 3000 iterations saved. Running time = secs
#>                    mu.vect sd.vect    2.5%     25%     50%     75%   97.5%
#> EM[2,1]             -0.729   0.650  -1.969  -1.136  -0.772  -0.357   0.486
#> EM[3,1]             -0.500   0.578  -1.723  -0.815  -0.476  -0.174   0.550
#> EM[4,1]              0.249   0.531  -0.635  -0.140   0.151   0.598   1.325
#> EM[5,1]             -0.386   0.327  -1.105  -0.588  -0.373  -0.173   0.206
#> EM[6,1]              0.257   0.380  -0.488   0.034   0.247   0.483   1.054
#> EM[7,1]             -0.196   0.267  -0.770  -0.365  -0.168  -0.014   0.266
#> EM[8,1]             -0.396   0.217  -0.915  -0.515  -0.381  -0.251  -0.026
#> EM[3,2]              0.230   0.736  -1.335  -0.169   0.237   0.660   1.623
#> EM[4,2]              0.979   0.758  -0.513   0.530   1.013   1.431   2.459
#> EM[5,2]              0.344   0.700  -1.139  -0.024   0.385   0.763   1.607
#> EM[6,2]              0.986   0.670  -0.247   0.587   0.995   1.367   2.384
#> EM[7,2]              0.533   0.659  -0.743   0.143   0.562   0.933   1.755
#> EM[8,2]              0.333   0.641  -0.913  -0.045   0.367   0.746   1.468
#> EM[4,3]              0.749   0.734  -0.539   0.269   0.690   1.196   2.380
#> EM[5,3]              0.114   0.636  -1.188  -0.225   0.119   0.458   1.385
#> EM[6,3]              0.756   0.629  -0.394   0.376   0.711   1.098   2.165
#> EM[7,3]              0.303   0.598  -0.815  -0.049   0.289   0.631   1.526
#> EM[8,3]              0.103   0.576  -0.979  -0.209   0.110   0.428   1.257
#> EM[5,4]             -0.635   0.596  -2.023  -1.004  -0.537  -0.182   0.246
#> EM[6,4]              0.007   0.554  -1.109  -0.351   0.079   0.375   1.042
#> EM[7,4]             -0.446   0.521  -1.533  -0.781  -0.355  -0.084   0.411
#> EM[8,4]             -0.646   0.542  -1.793  -1.019  -0.529  -0.256   0.177
#> EM[6,5]              0.643   0.490  -0.203   0.304   0.608   0.899   1.772
#> EM[7,5]              0.190   0.376  -0.539  -0.038   0.174   0.408   1.013
#> EM[8,5]             -0.010   0.351  -0.708  -0.226  -0.005   0.204   0.715
#> EM[7,6]             -0.453   0.393  -1.332  -0.678  -0.418  -0.204   0.247
#> EM[8,6]             -0.653   0.384  -1.484  -0.884  -0.626  -0.393   0.054
#> EM[8,7]             -0.200   0.279  -0.793  -0.366  -0.184  -0.023   0.315
#> EM.pred[2,1]        -0.730   0.665  -1.989  -1.140  -0.765  -0.343   0.507
#> EM.pred[3,1]        -0.498   0.591  -1.738  -0.824  -0.481  -0.158   0.587
#> EM.pred[4,1]         0.251   0.550  -0.674  -0.133   0.166   0.609   1.349
#> EM.pred[5,1]        -0.387   0.359  -1.167  -0.595  -0.370  -0.159   0.279
#> EM.pred[6,1]         0.257   0.403  -0.602   0.030   0.254   0.492   1.080
#> EM.pred[7,1]        -0.196   0.301  -0.874  -0.373  -0.163   0.002   0.319
#> EM.pred[8,1]        -0.396   0.259  -1.034  -0.526  -0.370  -0.228   0.023
#> EM.pred[3,2]         0.229   0.748  -1.364  -0.169   0.231   0.673   1.663
#> EM.pred[4,2]         0.982   0.771  -0.516   0.514   1.029   1.439   2.483
#> EM.pred[5,2]         0.343   0.713  -1.182  -0.032   0.368   0.764   1.639
#> EM.pred[6,2]         0.990   0.688  -0.244   0.580   0.992   1.387   2.441
#> EM.pred[7,2]         0.534   0.672  -0.795   0.141   0.554   0.944   1.807
#> EM.pred[8,2]         0.330   0.654  -0.917  -0.055   0.366   0.751   1.526
#> EM.pred[4,3]         0.748   0.746  -0.569   0.268   0.695   1.197   2.388
#> EM.pred[5,3]         0.116   0.653  -1.163  -0.241   0.118   0.474   1.440
#> EM.pred[6,3]         0.752   0.646  -0.433   0.365   0.713   1.102   2.201
#> EM.pred[7,3]         0.305   0.615  -0.861  -0.059   0.290   0.651   1.603
#> EM.pred[8,3]         0.099   0.593  -1.123  -0.223   0.102   0.424   1.293
#> EM.pred[5,4]        -0.634   0.609  -2.005  -1.006  -0.539  -0.186   0.312
#> EM.pred[6,4]         0.008   0.569  -1.145  -0.375   0.064   0.392   1.066
#> EM.pred[7,4]        -0.442   0.537  -1.541  -0.799  -0.374  -0.068   0.491
#> EM.pred[8,4]        -0.647   0.564  -1.841  -1.046  -0.538  -0.244   0.247
#> EM.pred[6,5]         0.649   0.508  -0.234   0.306   0.622   0.916   1.792
#> EM.pred[7,5]         0.187   0.403  -0.608  -0.052   0.174   0.430   1.049
#> EM.pred[8,5]        -0.008   0.377  -0.765  -0.228  -0.007   0.227   0.765
#> EM.pred[7,6]        -0.454   0.416  -1.367  -0.689  -0.413  -0.190   0.315
#> EM.pred[8,6]        -0.654   0.408  -1.555  -0.891  -0.631  -0.384   0.099
#> EM.pred[8,7]        -0.200   0.315  -0.873  -0.381  -0.181  -0.006   0.390
#> SUCRA[1]             0.293   0.174   0.000   0.143   0.286   0.429   0.714
#> SUCRA[2]             0.809   0.287   0.000   0.714   1.000   1.000   1.000
#> SUCRA[3]             0.697   0.285   0.000   0.571   0.857   0.857   1.000
#> SUCRA[4]             0.222   0.240   0.000   0.000   0.143   0.429   0.857
#> SUCRA[5]             0.653   0.237   0.143   0.429   0.714   0.857   1.000
#> SUCRA[6]             0.143   0.175   0.000   0.000   0.143   0.143   0.571
#> SUCRA[7]             0.494   0.216   0.143   0.286   0.429   0.571   0.857
#> SUCRA[8]             0.690   0.173   0.286   0.571   0.714   0.857   1.000
#> abs_risk[1]          0.390   0.000   0.390   0.390   0.390   0.390   0.390
#> abs_risk[2]          0.252   0.116   0.082   0.170   0.228   0.309   0.510
#> abs_risk[3]          0.292   0.110   0.102   0.221   0.284   0.350   0.526
#> abs_risk[4]          0.452   0.125   0.253   0.357   0.427   0.538   0.706
#> abs_risk[5]          0.307   0.067   0.175   0.262   0.306   0.350   0.440
#> abs_risk[6]          0.454   0.091   0.282   0.398   0.450   0.509   0.647
#> abs_risk[7]          0.347   0.059   0.228   0.307   0.351   0.387   0.455
#> abs_risk[8]          0.303   0.044   0.204   0.276   0.304   0.332   0.384
#> beta[1]              0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> beta[2]              0.043   0.114  -0.159  -0.010   0.033   0.090   0.279
#> beta[3]              0.041   0.112  -0.179  -0.011   0.035   0.086   0.284
#> beta[4]              0.062   0.062  -0.039   0.017   0.055   0.102   0.196
#> beta[5]              0.004   0.074  -0.161  -0.034   0.011   0.051   0.135
#> beta[6]              0.074   0.079  -0.054   0.018   0.061   0.119   0.261
#> beta[7]              0.039   0.044  -0.047   0.009   0.040   0.069   0.123
#> beta[8]              0.011   0.039  -0.074  -0.013   0.014   0.038   0.084
#> beta.all[2,1]        0.043   0.114  -0.159  -0.010   0.033   0.090   0.279
#> beta.all[3,1]        0.041   0.112  -0.179  -0.011   0.035   0.086   0.284
#> beta.all[4,1]        0.062   0.062  -0.039   0.017   0.055   0.102   0.196
#> beta.all[5,1]        0.004   0.074  -0.161  -0.034   0.011   0.051   0.135
#> beta.all[6,1]        0.074   0.079  -0.054   0.018   0.061   0.119   0.261
#> beta.all[7,1]        0.039   0.044  -0.047   0.009   0.040   0.069   0.123
#> beta.all[8,1]        0.011   0.039  -0.074  -0.013   0.014   0.038   0.084
#> beta.all[3,2]       -0.002   0.137  -0.295  -0.045   0.001   0.042   0.280
#> beta.all[4,2]        0.019   0.115  -0.198  -0.023   0.008   0.061   0.252
#> beta.all[5,2]       -0.039   0.130  -0.361  -0.080  -0.014   0.016   0.180
#> beta.all[6,2]        0.031   0.124  -0.198  -0.016   0.012   0.075   0.315
#> beta.all[7,2]       -0.004   0.115  -0.245  -0.041   0.001   0.037   0.220
#> beta.all[8,2]       -0.031   0.114  -0.283  -0.074  -0.013   0.015   0.172
#> beta.all[4,3]        0.022   0.115  -0.208  -0.020   0.009   0.066   0.276
#> beta.all[5,3]       -0.036   0.125  -0.339  -0.075  -0.014   0.017   0.174
#> beta.all[6,3]        0.033   0.118  -0.188  -0.016   0.012   0.074   0.312
#> beta.all[7,3]       -0.001   0.113  -0.240  -0.040   0.001   0.038   0.245
#> beta.all[8,3]       -0.029   0.114  -0.298  -0.071  -0.013   0.017   0.189
#> beta.all[5,4]       -0.058   0.091  -0.279  -0.103  -0.033   0.002   0.078
#> beta.all[6,4]        0.012   0.074  -0.135  -0.024   0.004   0.043   0.189
#> beta.all[7,4]       -0.023   0.063  -0.165  -0.056  -0.011   0.012   0.085
#> beta.all[8,4]       -0.051   0.067  -0.214  -0.089  -0.035  -0.002   0.048
#> beta.all[6,5]        0.070   0.108  -0.088   0.000   0.040   0.120   0.344
#> beta.all[7,5]        0.035   0.076  -0.096  -0.007   0.017   0.073   0.221
#> beta.all[8,5]        0.007   0.075  -0.145  -0.028   0.001   0.040   0.176
#> beta.all[7,6]       -0.035   0.077  -0.219  -0.071  -0.017   0.009   0.099
#> beta.all[8,6]       -0.062   0.081  -0.255  -0.110  -0.044  -0.003   0.063
#> beta.all[8,7]       -0.028   0.049  -0.142  -0.054  -0.021   0.002   0.059
#> delta[1,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[2,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[3,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[4,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[5,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[6,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[7,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[8,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[9,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[10,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[11,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[12,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[13,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[14,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[15,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[16,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[17,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[18,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[19,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[20,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[21,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[1,2]          -0.037   0.367  -0.699  -0.278  -0.079   0.174   0.593
#> delta[2,2]          -0.020   0.351  -0.631  -0.257  -0.075   0.180   0.596
#> delta[3,2]          -0.405   0.195  -0.858  -0.527  -0.343  -0.283  -0.097
#> delta[4,2]          -0.427   0.153  -0.765  -0.509  -0.428  -0.333  -0.135
#> delta[5,2]          -0.386   0.201  -0.883  -0.493  -0.332  -0.270  -0.055
#> delta[6,2]          -0.317   0.174  -0.695  -0.403  -0.316  -0.226   0.032
#> delta[7,2]          -0.426   0.147  -0.756  -0.507  -0.428  -0.336  -0.140
#> delta[8,2]          -0.357   0.156  -0.705  -0.451  -0.331  -0.268  -0.080
#> delta[9,2]          -0.382   0.166  -0.756  -0.485  -0.337  -0.278  -0.097
#> delta[10,2]          0.019   0.332  -0.508  -0.228  -0.039   0.234   0.601
#> delta[11,2]         -0.085   0.235  -0.633  -0.185  -0.088   0.073   0.312
#> delta[12,2]         -0.010   0.325  -0.532  -0.243  -0.064   0.174   0.590
#> delta[13,2]         -0.947   0.478  -1.828  -1.285  -0.954  -0.704   0.020
#> delta[14,2]         -0.101   0.188  -0.526  -0.203  -0.095   0.018   0.237
#> delta[15,2]         -0.034   0.235  -0.528  -0.180  -0.047   0.132   0.408
#> delta[16,2]         -0.348   0.134  -0.592  -0.433  -0.366  -0.261  -0.067
#> delta[17,2]         -0.431   0.261  -1.008  -0.592  -0.395  -0.251   0.040
#> delta[18,2]         -0.446   0.258  -1.071  -0.573  -0.416  -0.293   0.010
#> delta[19,2]         -0.435   0.262  -1.073  -0.566  -0.414  -0.271   0.009
#> delta[20,2]         -0.356   0.182  -0.739  -0.457  -0.331  -0.262  -0.016
#> delta[21,2]         -0.493   0.196  -0.963  -0.594  -0.447  -0.378  -0.172
#> delta[9,3]          -0.477   0.170  -0.886  -0.569  -0.441  -0.379  -0.180
#> delta[10,3]         -0.405   0.239  -0.945  -0.549  -0.407  -0.268   0.072
#> delta[12,3]         -0.340   0.223  -0.780  -0.464  -0.360  -0.198   0.105
#> delta[13,3]         -0.708   0.375  -1.557  -0.918  -0.637  -0.499  -0.047
#> delta[19,3]         -0.402   0.211  -0.942  -0.505  -0.338  -0.278  -0.084
#> delta[10,4]         -0.384   0.192  -0.838  -0.492  -0.334  -0.272  -0.068
#> delta[12,4]         -0.312   0.178  -0.667  -0.399  -0.314  -0.222   0.070
#> delta[13,4]         -0.123   0.284  -0.826  -0.232  -0.114   0.073   0.317
#> dev.o[1,1]           2.221   2.370   0.006   0.462   1.479   3.212   8.506
#> dev.o[2,1]           0.885   1.254   0.001   0.104   0.427   1.166   4.068
#> dev.o[3,1]           0.997   1.381   0.001   0.105   0.466   1.364   4.798
#> dev.o[4,1]           0.737   1.050   0.001   0.076   0.344   0.986   3.518
#> dev.o[5,1]           0.652   0.912   0.001   0.071   0.292   0.872   3.139
#> dev.o[6,1]           1.060   1.358   0.002   0.127   0.557   1.468   4.895
#> dev.o[7,1]           0.772   1.091   0.001   0.087   0.358   1.018   3.919
#> dev.o[8,1]           0.714   0.980   0.001   0.074   0.327   0.984   3.427
#> dev.o[9,1]           0.752   0.972   0.001   0.099   0.389   1.064   3.232
#> dev.o[10,1]          0.552   0.795   0.001   0.058   0.251   0.707   2.732
#> dev.o[11,1]          0.783   1.085   0.001   0.080   0.363   1.068   3.860
#> dev.o[12,1]          1.012   1.238   0.001   0.134   0.558   1.456   4.516
#> dev.o[13,1]          1.213   1.516   0.002   0.145   0.623   1.727   5.518
#> dev.o[14,1]          0.820   1.176   0.001   0.081   0.358   1.122   3.934
#> dev.o[15,1]          0.773   1.174   0.001   0.080   0.348   0.962   4.062
#> dev.o[16,1]          1.161   1.536   0.002   0.130   0.575   1.586   5.476
#> dev.o[17,1]          1.830   2.086   0.005   0.313   1.103   2.607   7.478
#> dev.o[18,1]          1.332   1.737   0.002   0.178   0.673   1.885   6.040
#> dev.o[19,1]          1.962   1.923   0.011   0.549   1.427   2.835   6.731
#> dev.o[20,1]          0.785   1.061   0.001   0.080   0.371   1.066   3.855
#> dev.o[21,1]          1.470   1.777   0.001   0.199   0.803   2.093   6.597
#> dev.o[1,2]           2.916   1.827   0.490   1.564   2.533   3.846   7.510
#> dev.o[2,2]           0.882   1.237   0.001   0.094   0.411   1.198   4.167
#> dev.o[3,2]           0.968   1.298   0.001   0.105   0.448   1.314   4.628
#> dev.o[4,2]           0.797   1.101   0.001   0.085   0.377   1.076   3.798
#> dev.o[5,2]           0.566   0.765   0.001   0.063   0.262   0.742   2.825
#> dev.o[6,2]           1.118   1.428   0.002   0.149   0.612   1.525   5.357
#> dev.o[7,2]           0.845   1.174   0.001   0.090   0.406   1.089   4.256
#> dev.o[8,2]           0.660   0.914   0.001   0.068   0.301   0.885   3.186
#> dev.o[9,2]           0.579   0.863   0.000   0.049   0.251   0.750   2.941
#> dev.o[10,2]          1.746   1.927   0.003   0.286   1.106   2.537   6.941
#> dev.o[11,2]          0.862   1.187   0.001   0.092   0.398   1.178   4.180
#> dev.o[12,2]          1.345   1.809   0.002   0.154   0.656   1.823   6.436
#> dev.o[13,2]          1.018   1.413   0.001   0.107   0.475   1.375   5.101
#> dev.o[14,2]          0.698   1.001   0.001   0.071   0.321   0.933   3.285
#> dev.o[15,2]          0.819   1.129   0.001   0.083   0.371   1.111   3.996
#> dev.o[16,2]          1.283   1.727   0.002   0.129   0.644   1.746   6.039
#> dev.o[17,2]          1.945   1.866   0.008   0.506   1.457   2.801   6.689
#> dev.o[18,2]          1.323   1.675   0.002   0.173   0.706   1.841   6.066
#> dev.o[19,2]          0.434   0.633   0.000   0.041   0.193   0.554   2.217
#> dev.o[20,2]          0.757   1.052   0.001   0.078   0.357   1.000   3.704
#> dev.o[21,2]          1.336   1.617   0.002   0.193   0.716   1.947   5.779
#> dev.o[9,3]           0.823   1.119   0.001   0.079   0.386   1.136   4.038
#> dev.o[10,3]          0.800   1.091   0.001   0.089   0.383   1.054   4.002
#> dev.o[12,3]          1.350   1.608   0.002   0.174   0.754   2.000   5.640
#> dev.o[13,3]          0.974   1.418   0.001   0.099   0.440   1.271   4.754
#> dev.o[19,3]          1.717   1.340   0.066   0.703   1.404   2.405   5.175
#> dev.o[10,4]          1.082   1.421   0.002   0.136   0.562   1.481   5.003
#> dev.o[12,4]          1.008   1.300   0.002   0.119   0.527   1.372   4.678
#> dev.o[13,4]          1.057   1.435   0.001   0.115   0.489   1.413   5.168
#> effectiveness[1,1]   0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> effectiveness[2,1]   0.549   0.498   0.000   0.000   1.000   1.000   1.000
#> effectiveness[3,1]   0.217   0.412   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,1]   0.004   0.066   0.000   0.000   0.000   0.000   0.000
#> effectiveness[5,1]   0.121   0.327   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,1]   0.001   0.036   0.000   0.000   0.000   0.000   0.000
#> effectiveness[7,1]   0.021   0.143   0.000   0.000   0.000   0.000   0.000
#> effectiveness[8,1]   0.086   0.280   0.000   0.000   0.000   0.000   1.000
#> effectiveness[1,2]   0.006   0.077   0.000   0.000   0.000   0.000   0.000
#> effectiveness[2,2]   0.169   0.375   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,2]   0.307   0.461   0.000   0.000   0.000   1.000   1.000
#> effectiveness[4,2]   0.023   0.151   0.000   0.000   0.000   0.000   0.000
#> effectiveness[5,2]   0.196   0.397   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,2]   0.008   0.089   0.000   0.000   0.000   0.000   0.000
#> effectiveness[7,2]   0.085   0.279   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,2]   0.206   0.404   0.000   0.000   0.000   0.000   1.000
#> effectiveness[1,3]   0.021   0.142   0.000   0.000   0.000   0.000   0.000
#> effectiveness[2,3]   0.066   0.248   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,3]   0.143   0.350   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,3]   0.050   0.218   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,3]   0.251   0.434   0.000   0.000   0.000   1.000   1.000
#> effectiveness[6,3]   0.014   0.118   0.000   0.000   0.000   0.000   0.000
#> effectiveness[7,3]   0.136   0.342   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,3]   0.320   0.466   0.000   0.000   0.000   1.000   1.000
#> effectiveness[1,4]   0.086   0.280   0.000   0.000   0.000   0.000   1.000
#> effectiveness[2,4]   0.054   0.227   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,4]   0.098   0.297   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,4]   0.073   0.261   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,4]   0.181   0.385   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,4]   0.026   0.158   0.000   0.000   0.000   0.000   1.000
#> effectiveness[7,4]   0.218   0.413   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,4]   0.265   0.441   0.000   0.000   0.000   1.000   1.000
#> effectiveness[1,5]   0.221   0.415   0.000   0.000   0.000   0.000   1.000
#> effectiveness[2,5]   0.043   0.202   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,5]   0.073   0.260   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,5]   0.105   0.307   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,5]   0.121   0.327   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,5]   0.062   0.241   0.000   0.000   0.000   0.000   1.000
#> effectiveness[7,5]   0.282   0.450   0.000   0.000   0.000   1.000   1.000
#> effectiveness[8,5]   0.092   0.290   0.000   0.000   0.000   0.000   1.000
#> effectiveness[1,6]   0.343   0.475   0.000   0.000   0.000   1.000   1.000
#> effectiveness[2,6]   0.047   0.211   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,6]   0.069   0.253   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,6]   0.146   0.353   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,6]   0.082   0.274   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,6]   0.117   0.321   0.000   0.000   0.000   0.000   1.000
#> effectiveness[7,6]   0.170   0.376   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,6]   0.027   0.161   0.000   0.000   0.000   0.000   1.000
#> effectiveness[1,7]   0.217   0.412   0.000   0.000   0.000   0.000   1.000
#> effectiveness[2,7]   0.039   0.194   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,7]   0.059   0.235   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,7]   0.231   0.422   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,7]   0.037   0.189   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,7]   0.348   0.477   0.000   0.000   0.000   1.000   1.000
#> effectiveness[7,7]   0.064   0.245   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,7]   0.005   0.068   0.000   0.000   0.000   0.000   0.000
#> effectiveness[1,8]   0.106   0.308   0.000   0.000   0.000   0.000   1.000
#> effectiveness[2,8]   0.034   0.181   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,8]   0.035   0.184   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,8]   0.367   0.482   0.000   0.000   0.000   1.000   1.000
#> effectiveness[5,8]   0.011   0.103   0.000   0.000   0.000   0.000   0.000
#> effectiveness[6,8]   0.424   0.494   0.000   0.000   0.000   1.000   1.000
#> effectiveness[7,8]   0.023   0.151   0.000   0.000   0.000   0.000   0.000
#> effectiveness[8,8]   0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> hat.par[1,1]         1.646   0.804   0.371   1.030   1.554   2.165   3.417
#> hat.par[2,1]        50.214   4.855  41.155  46.884  50.086  53.531  59.688
#> hat.par[3,1]        44.357   4.501  35.813  41.290  44.279  47.356  53.354
#> hat.par[4,1]        42.124   4.755  33.537  38.682  41.969  45.233  51.810
#> hat.par[5,1]        17.315   2.446  12.733  15.706  17.225  18.951  22.317
#> hat.par[6,1]        44.310   4.061  36.589  41.598  44.341  47.012  52.334
#> hat.par[7,1]       157.652   7.312 142.940 152.721 157.826 162.422 171.926
#> hat.par[8,1]        68.179   5.475  57.676  64.409  68.101  71.827  78.670
#> hat.par[9,1]        88.953   4.616  80.601  85.655  88.786  92.029  98.269
#> hat.par[10,1]       78.628   3.570  71.679  76.293  78.733  81.136  85.488
#> hat.par[11,1]       73.821   5.448  63.532  70.009  73.729  77.382  84.797
#> hat.par[12,1]       76.555   4.166  67.769  73.790  76.724  79.447  84.435
#> hat.par[13,1]       49.502   4.636  40.760  46.245  49.366  52.549  59.001
#> hat.par[14,1]       34.820   4.796  26.335  31.448  34.582  37.814  44.964
#> hat.par[15,1]       34.853   4.599  26.030  31.760  34.792  37.792  44.273
#> hat.par[16,1]      303.548  12.787 277.868 294.763 303.677 312.228 328.314
#> hat.par[17,1]       10.931   2.533   6.484   9.173  10.773  12.507  16.337
#> hat.par[18,1]       21.314   3.403  15.192  18.924  21.198  23.454  28.376
#> hat.par[19,1]        3.730   1.235   1.726   2.841   3.608   4.447   6.604
#> hat.par[20,1]       23.519   3.735  16.693  20.879  23.362  25.991  31.026
#> hat.par[21,1]       31.181   4.580  22.896  27.984  30.897  34.038  40.753
#> hat.par[1,2]         1.291   0.719   0.241   0.745   1.171   1.709   2.997
#> hat.par[2,2]        45.613   4.980  36.067  42.138  45.596  48.946  55.251
#> hat.par[3,2]        30.593   4.042  23.125  27.716  30.451  33.288  38.757
#> hat.par[4,2]        43.701   5.178  34.438  40.090  43.380  47.031  54.563
#> hat.par[5,2]        11.670   2.071   7.843  10.179  11.611  13.081  15.987
#> hat.par[6,2]        34.667   3.840  27.193  32.097  34.517  37.097  42.347
#> hat.par[7,2]       196.964   9.866 177.328 190.283 196.814 203.690 216.593
#> hat.par[8,2]        51.931   4.927  42.622  48.589  51.813  55.304  61.656
#> hat.par[9,2]        81.897   5.210  71.686  78.505  81.918  85.374  92.039
#> hat.par[10,2]       72.474   3.851  64.845  69.892  72.513  75.162  79.807
#> hat.par[11,2]      118.258   8.014 103.127 112.634 118.152 123.731 133.628
#> hat.par[12,2]       82.854   5.170  72.748  79.329  82.941  86.359  92.899
#> hat.par[13,2]       25.970   4.613  17.861  22.631  25.698  28.868  35.624
#> hat.par[14,2]       30.942   4.330  22.647  28.021  30.879  33.728  39.837
#> hat.par[15,2]       34.013   4.607  25.655  30.826  33.730  36.930  43.682
#> hat.par[16,2]      247.429  12.803 223.150 238.930 247.187 255.759 273.660
#> hat.par[17,2]        6.916   1.881   3.813   5.530   6.775   8.079  10.980
#> hat.par[18,2]       13.624   2.743   8.688  11.700  13.480  15.373  19.419
#> hat.par[19,2]        2.524   0.964   1.040   1.843   2.398   3.074   4.757
#> hat.par[20,2]       20.448   3.566  14.170  17.874  20.286  22.735  27.833
#> hat.par[21,2]       22.645   3.779  15.620  20.018  22.472  25.193  30.367
#> hat.par[9,3]        80.028   5.512  69.184  76.387  80.080  83.707  90.929
#> hat.par[10,3]       69.192   4.435  60.323  66.213  69.344  72.219  77.841
#> hat.par[12,3]       66.486   4.648  57.741  63.172  66.445  69.684  75.599
#> hat.par[13,3]       34.958   5.076  25.652  31.472  34.807  38.272  45.333
#> hat.par[19,3]        2.780   0.976   1.230   2.067   2.654   3.366   5.056
#> hat.par[10,4]       66.615   4.103  58.427  63.949  66.638  69.303  74.653
#> hat.par[12,4]       61.717   4.396  53.246  58.738  61.652  64.628  70.437
#> hat.par[13,4]       41.162   4.592  32.630  38.037  40.981  44.146  50.572
#> phi[1]              -0.468   0.500  -1.465  -0.792  -0.476  -0.154   0.590
#> phi[2]               0.027   0.972  -1.893  -0.616  -0.017   0.684   2.007
#> phi[3]              -0.039   0.922  -1.881  -0.656  -0.005   0.578   1.705
#> phi[4]              -0.719   0.941  -2.322  -1.379  -0.847  -0.126   1.285
#> phi[5]              -0.637   0.779  -2.151  -1.137  -0.655  -0.120   0.952
#> phi[6]               0.829   0.772  -0.768   0.327   0.820   1.369   2.271
#> phi[7]              -0.215   0.667  -1.541  -0.638  -0.205   0.200   1.135
#> phi[8]              -0.105   0.937  -1.915  -0.724  -0.119   0.515   1.766
#> tau                  0.108   0.090   0.001   0.035   0.091   0.158   0.332
#> totresdev.o         54.190   9.058  38.007  47.920  53.659  59.823  73.165
#> deviance           581.881  13.395 557.695 572.835 581.101 590.552 609.777
#>                     Rhat n.eff
#> EM[2,1]            1.063    50
#> EM[3,1]            1.017  3000
#> EM[4,1]            1.752     6
#> EM[5,1]            1.010   500
#> EM[6,1]            1.027   140
#> EM[7,1]            1.047    48
#> EM[8,1]            1.027   150
#> EM[3,2]            1.053    59
#> EM[4,2]            1.199    16
#> EM[5,2]            1.047    71
#> EM[6,2]            1.036   120
#> EM[7,2]            1.043    72
#> EM[8,2]            1.048    67
#> EM[4,3]            1.345    10
#> EM[5,3]            1.015   780
#> EM[6,3]            1.014   260
#> EM[7,3]            1.027   160
#> EM[8,3]            1.017   520
#> EM[5,4]            1.483     8
#> EM[6,4]            1.486     8
#> EM[7,4]            1.502     8
#> EM[8,4]            1.583     7
#> EM[6,5]            1.004   540
#> EM[7,5]            1.010   240
#> EM[8,5]            1.001  3000
#> EM[7,6]            1.009   260
#> EM[8,6]            1.008   540
#> EM[8,7]            1.015   140
#> EM.pred[2,1]       1.061    49
#> EM.pred[3,1]       1.013  3000
#> EM.pred[4,1]       1.664     6
#> EM.pred[5,1]       1.005   570
#> EM.pred[6,1]       1.026   150
#> EM.pred[7,1]       1.037    61
#> EM.pred[8,1]       1.017   310
#> EM.pred[3,2]       1.048    61
#> EM.pred[4,2]       1.186    17
#> EM.pred[5,2]       1.043    76
#> EM.pred[6,2]       1.032   120
#> EM.pred[7,2]       1.037    81
#> EM.pred[8,2]       1.043    74
#> EM.pred[4,3]       1.340    10
#> EM.pred[5,3]       1.012  1200
#> EM.pred[6,3]       1.012   270
#> EM.pred[7,3]       1.022   170
#> EM.pred[8,3]       1.012   470
#> EM.pred[5,4]       1.457     8
#> EM.pred[6,4]       1.446     8
#> EM.pred[7,4]       1.461     8
#> EM.pred[8,4]       1.513     8
#> EM.pred[6,5]       1.004   650
#> EM.pred[7,5]       1.008   250
#> EM.pred[8,5]       1.001  3000
#> EM.pred[7,6]       1.011   270
#> EM.pred[8,6]       1.008   650
#> EM.pred[8,7]       1.014   200
#> SUCRA[1]           1.092    28
#> SUCRA[2]           1.076    41
#> SUCRA[3]           1.016   170
#> SUCRA[4]           1.333    10
#> SUCRA[5]           1.005  1700
#> SUCRA[6]           1.035   150
#> SUCRA[7]           1.011   240
#> SUCRA[8]           1.022   120
#> abs_risk[1]        1.000     1
#> abs_risk[2]        1.052    58
#> abs_risk[3]        1.022  1700
#> abs_risk[4]        1.674     6
#> abs_risk[5]        1.011   620
#> abs_risk[6]        1.031   110
#> abs_risk[7]        1.047    49
#> abs_risk[8]        1.030   140
#> beta[1]            1.000     1
#> beta[2]            1.075   180
#> beta[3]            1.052   220
#> beta[4]            1.266    12
#> beta[5]            1.042    70
#> beta[6]            1.078    32
#> beta[7]            1.054    45
#> beta[8]            1.063    38
#> beta.all[2,1]      1.075   180
#> beta.all[3,1]      1.052   220
#> beta.all[4,1]      1.266    12
#> beta.all[5,1]      1.042    70
#> beta.all[6,1]      1.078    32
#> beta.all[7,1]      1.054    45
#> beta.all[8,1]      1.063    38
#> beta.all[3,2]      1.058   840
#> beta.all[4,2]      1.097    91
#> beta.all[5,2]      1.076   250
#> beta.all[6,2]      1.066   160
#> beta.all[7,2]      1.077  3000
#> beta.all[8,2]      1.063  1100
#> beta.all[4,3]      1.091    48
#> beta.all[5,3]      1.050  1300
#> beta.all[6,3]      1.063    68
#> beta.all[7,3]      1.058   680
#> beta.all[8,3]      1.037   310
#> beta.all[5,4]      1.153    21
#> beta.all[6,4]      1.014   150
#> beta.all[7,4]      1.123    23
#> beta.all[8,4]      1.083    30
#> beta.all[6,5]      1.068    37
#> beta.all[7,5]      1.041    97
#> beta.all[8,5]      1.043    60
#> beta.all[7,6]      1.042    58
#> beta.all[8,6]      1.027    90
#> beta.all[8,7]      1.010   460
#> delta[1,1]         1.000     1
#> delta[2,1]         1.000     1
#> delta[3,1]         1.000     1
#> delta[4,1]         1.000     1
#> delta[5,1]         1.000     1
#> delta[6,1]         1.000     1
#> delta[7,1]         1.000     1
#> delta[8,1]         1.000     1
#> delta[9,1]         1.000     1
#> delta[10,1]        1.000     1
#> delta[11,1]        1.000     1
#> delta[12,1]        1.000     1
#> delta[13,1]        1.000     1
#> delta[14,1]        1.000     1
#> delta[15,1]        1.000     1
#> delta[16,1]        1.000     1
#> delta[17,1]        1.000     1
#> delta[18,1]        1.000     1
#> delta[19,1]        1.000     1
#> delta[20,1]        1.000     1
#> delta[21,1]        1.000     1
#> delta[1,2]         1.707     6
#> delta[2,2]         1.764     6
#> delta[3,2]         1.037    60
#> delta[4,2]         1.054    95
#> delta[5,2]         1.042    66
#> delta[6,2]         1.011   790
#> delta[7,2]         1.079    49
#> delta[8,2]         1.031    86
#> delta[9,2]         1.047    62
#> delta[10,2]        1.789     6
#> delta[11,2]        1.067    73
#> delta[12,2]        1.798     6
#> delta[13,2]        1.158    23
#> delta[14,2]        1.037    75
#> delta[15,2]        1.109    26
#> delta[16,2]        1.188    16
#> delta[17,2]        1.057    59
#> delta[18,2]        1.128    28
#> delta[19,2]        1.127    28
#> delta[20,2]        1.080    38
#> delta[21,2]        1.036   140
#> delta[9,3]         1.043   160
#> delta[10,3]        1.137    27
#> delta[12,3]        1.105    38
#> delta[13,3]        1.047   130
#> delta[19,3]        1.078    40
#> delta[10,4]        1.063    42
#> delta[12,4]        1.022   260
#> delta[13,4]        1.057   110
#> dev.o[1,1]         1.001  3000
#> dev.o[2,1]         1.005   490
#> dev.o[3,1]         1.002  1900
#> dev.o[4,1]         1.005   410
#> dev.o[5,1]         1.005   940
#> dev.o[6,1]         1.004   870
#> dev.o[7,1]         1.003   970
#> dev.o[8,1]         1.002  1800
#> dev.o[9,1]         1.001  3000
#> dev.o[10,1]        1.004   540
#> dev.o[11,1]        1.005   480
#> dev.o[12,1]        1.017   120
#> dev.o[13,1]        1.008   270
#> dev.o[14,1]        1.001  3000
#> dev.o[15,1]        1.003   780
#> dev.o[16,1]        1.013   160
#> dev.o[17,1]        1.011   370
#> dev.o[18,1]        1.010   320
#> dev.o[19,1]        1.006   350
#> dev.o[20,1]        1.002  2700
#> dev.o[21,1]        1.008   410
#> dev.o[1,2]         1.005   420
#> dev.o[2,2]         1.001  2900
#> dev.o[3,2]         1.001  3000
#> dev.o[4,2]         1.001  3000
#> dev.o[5,2]         1.001  3000
#> dev.o[6,2]         1.004   840
#> dev.o[7,2]         1.001  2500
#> dev.o[8,2]         1.001  3000
#> dev.o[9,2]         1.003   800
#> dev.o[10,2]        1.015   150
#> dev.o[11,2]        1.001  3000
#> dev.o[12,2]        1.074    33
#> dev.o[13,2]        1.009   420
#> dev.o[14,2]        1.005   490
#> dev.o[15,2]        1.002  1800
#> dev.o[16,2]        1.005   500
#> dev.o[17,2]        1.002  1500
#> dev.o[18,2]        1.005   470
#> dev.o[19,2]        1.001  3000
#> dev.o[20,2]        1.001  3000
#> dev.o[21,2]        1.007   300
#> dev.o[9,3]         1.009   260
#> dev.o[10,3]        1.001  3000
#> dev.o[12,3]        1.009   240
#> dev.o[13,3]        1.001  3000
#> dev.o[19,3]        1.003   790
#> dev.o[10,4]        1.002  3000
#> dev.o[12,4]        1.016   140
#> dev.o[13,4]        1.001  3000
#> effectiveness[1,1] 1.000     1
#> effectiveness[2,1] 1.058    39
#> effectiveness[3,1] 1.028   100
#> effectiveness[4,1] 1.298   230
#> effectiveness[5,1] 1.042   110
#> effectiveness[6,1] 1.166  1700
#> effectiveness[7,1] 1.001  3000
#> effectiveness[8,1] 1.024   260
#> effectiveness[1,2] 1.145   460
#> effectiveness[2,2] 1.012   290
#> effectiveness[3,2] 1.013   180
#> effectiveness[4,2] 1.198    86
#> effectiveness[5,2] 1.002  1100
#> effectiveness[6,2] 1.234   190
#> effectiveness[7,2] 1.064    97
#> effectiveness[8,2] 1.002  1000
#> effectiveness[1,3] 1.062   370
#> effectiveness[2,3] 1.019   410
#> effectiveness[3,3] 1.005   710
#> effectiveness[4,3] 1.148    63
#> effectiveness[5,3] 1.009   300
#> effectiveness[6,3] 1.051   660
#> effectiveness[7,3] 1.001  2400
#> effectiveness[8,3] 1.001  3000
#> effectiveness[1,4] 1.015   410
#> effectiveness[2,4] 1.045   200
#> effectiveness[3,4] 1.001  3000
#> effectiveness[4,4] 1.097    71
#> effectiveness[5,4] 1.002  1200
#> effectiveness[6,4] 1.001  3000
#> effectiveness[7,4] 1.002  1300
#> effectiveness[8,4] 1.004   600
#> effectiveness[1,5] 1.025   120
#> effectiveness[2,5] 1.017   670
#> effectiveness[3,5] 1.004  1800
#> effectiveness[4,5] 1.033   150
#> effectiveness[5,5] 1.001  3000
#> effectiveness[6,5] 1.007  1200
#> effectiveness[7,5] 1.003   670
#> effectiveness[8,5] 1.020   280
#> effectiveness[1,6] 1.013   170
#> effectiveness[2,6] 1.021   500
#> effectiveness[3,6] 1.004  1800
#> effectiveness[4,6] 1.068    58
#> effectiveness[5,6] 1.001  3000
#> effectiveness[6,6] 1.006   700
#> effectiveness[7,6] 1.002  1600
#> effectiveness[8,6] 1.095   180
#> effectiveness[1,7] 1.047    65
#> effectiveness[2,7] 1.085   140
#> effectiveness[3,7] 1.052   170
#> effectiveness[4,7] 1.034    84
#> effectiveness[5,7] 1.012  1100
#> effectiveness[6,7] 1.146    19
#> effectiveness[7,7] 1.003  2400
#> effectiveness[8,7] 1.017  3000
#> effectiveness[1,8] 1.161    32
#> effectiveness[2,8] 1.088   160
#> effectiveness[3,8] 1.030   470
#> effectiveness[4,8] 1.424     9
#> effectiveness[5,8] 1.034  1300
#> effectiveness[6,8] 1.132    20
#> effectiveness[7,8] 1.005  3000
#> effectiveness[8,8] 1.000     1
#> hat.par[1,1]       1.003  1200
#> hat.par[2,1]       1.015   160
#> hat.par[3,1]       1.003   710
#> hat.par[4,1]       1.014   220
#> hat.par[5,1]       1.003   680
#> hat.par[6,1]       1.006   390
#> hat.par[7,1]       1.013   190
#> hat.par[8,1]       1.001  2500
#> hat.par[9,1]       1.004  1700
#> hat.par[10,1]      1.004   910
#> hat.par[11,1]      1.024    92
#> hat.par[12,1]      1.029    76
#> hat.par[13,1]      1.008   250
#> hat.par[14,1]      1.004   890
#> hat.par[15,1]      1.005   680
#> hat.par[16,1]      1.017   130
#> hat.par[17,1]      1.004   650
#> hat.par[18,1]      1.009   280
#> hat.par[19,1]      1.015   150
#> hat.par[20,1]      1.005   410
#> hat.par[21,1]      1.021   100
#> hat.par[1,2]       1.006   410
#> hat.par[2,2]       1.008   280
#> hat.par[3,2]       1.006   360
#> hat.par[4,2]       1.021   100
#> hat.par[5,2]       1.002  1100
#> hat.par[6,2]       1.005   500
#> hat.par[7,2]       1.004   580
#> hat.par[8,2]       1.006   390
#> hat.par[9,2]       1.015   160
#> hat.par[10,2]      1.023    91
#> hat.par[11,2]      1.006   400
#> hat.par[12,2]      1.168    17
#> hat.par[13,2]      1.020   110
#> hat.par[14,2]      1.003  3000
#> hat.par[15,2]      1.004   960
#> hat.par[16,2]      1.013   160
#> hat.par[17,2]      1.002  1600
#> hat.par[18,2]      1.008   320
#> hat.par[19,2]      1.001  3000
#> hat.par[20,2]      1.016   130
#> hat.par[21,2]      1.018   120
#> hat.par[9,3]       1.009   290
#> hat.par[10,3]      1.013   170
#> hat.par[12,3]      1.025    87
#> hat.par[13,3]      1.003  1400
#> hat.par[19,3]      1.004   590
#> hat.par[10,4]      1.004  1200
#> hat.par[12,4]      1.034    64
#> hat.par[13,4]      1.001  2600
#> phi[1]             1.036    88
#> phi[2]             1.078    32
#> phi[3]             1.022   110
#> phi[4]             1.502     8
#> phi[5]             1.030    86
#> phi[6]             1.044    58
#> phi[7]             1.004   630
#> phi[8]             1.060    40
#> tau                1.393    10
#> totresdev.o        1.039    57
#> deviance           1.028    76
#> 
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#> 
#> DIC info (using the rule: pV = var(deviance)/2)
#> pV = 87.4 and DIC = 669.3
#> DIC is an estimate of expected predictive error (lower deviance is better).
#> 
#> $data
#>                    study t1 t2 t3 t4  r1  r2 r3 r4  m1 m2 m3 m4  n1  n2  n3  n4
#> 1  Llewellyn-Jones, 1996  1  4 NA NA   3   0 NA NA   1  0 NA NA   8   8  NA  NA
#> 2         Paggiaro, 1998  1  4 NA NA  51  45 NA NA  27 19 NA NA 139 142  NA  NA
#> 3           Mahler, 1999  1  7 NA NA  47  28 NA NA  23  9 NA NA 143 135  NA  NA
#> 4         Casaburi, 2000  1  8 NA NA  41  45 NA NA  18 12 NA NA 191 279  NA  NA
#> 5        van Noord, 2000  1  7 NA NA  18  11 NA NA   8  7 NA NA  50  47  NA  NA
#> 6          Rennard, 2001  1  7 NA NA  41  38 NA NA  29 22 NA NA 135 132  NA  NA
#> 7         Casaburi, 2002  1  8 NA NA 156 198 NA NA  77 66 NA NA 371 550  NA  NA
#> 8          Chapman, 2002  1  7 NA NA  68  52 NA NA  28 20 NA NA 207 201  NA  NA
#> 9          Donohue, 2002  1  7  8 NA  92  82 77 NA  37 20 10 NA 201 213 209  NA
#> 10          Mahler, 2002  1  4  7  5  79  77 63 68  69 68 45 52 181 168 160 165
#> 11           Rossi, 2002  1  6 NA NA  75 117 NA NA  59 92 NA NA 220 425  NA  NA
#> 12         Hanania, 2003  1  4  7  5  73  79 65 71  59 49 57 53 185 183 177 178
#> 13      Szafranski, 2003  1  2  6  3  53  26 38 35  90 62 64 59 205 198 201 208
#> 14          Briggs, 2005  8  7 NA NA  30  36 NA NA  29 41 NA NA 328 325  NA  NA
#> 15        Campbell, 2005  1  6 NA NA  34  35 NA NA  39 30 NA NA 217 215  NA  NA
#> 16      Niewoehner, 2005  1  8 NA NA 296 255 NA NA 111 75 NA NA 915 914  NA  NA
#> 17       van Noord, 2005  8  6 NA NA   4  14 NA NA   1  1 NA NA  70  69  NA  NA
#> 18          Barnes, 2006  1  5 NA NA  24  11 NA NA   4  8 NA NA  73  67  NA  NA
#> 19       O Donnell, 2006  1  7  5 NA   6   1  2 NA   5  1  3 NA  64  59  62  NA
#> 20     Baumgartner, 2007  1  7 NA NA  24  20 NA NA  32 26 NA NA 143 144  NA  NA
#> 21         Freeman, 2007  1  8 NA NA  35  19 NA NA  33 18 NA NA 195 200  NA  NA
#> 
#> $n_chains
#> [1] 3
#> 
#> $n_iter
#> [1] 1000
#> 
#> $n_burnin
#> [1] 100
#> 
#> $n_thin
#> [1] 1
#> 
#> $abs_risk
#>                  mean         sd       2.5%       25%       50%       75%
#> abs_risk[1] 0.3900000 0.00000000 0.39000000 0.3900000 0.3900000 0.3900000
#> abs_risk[2] 0.2518042 0.11611437 0.08195602 0.1703463 0.2281248 0.3090043
#> abs_risk[3] 0.2918572 0.10974141 0.10240336 0.2206403 0.2842361 0.3495437
#> abs_risk[4] 0.4524276 0.12547246 0.25297936 0.3573428 0.4265030 0.5375856
#> abs_risk[5] 0.3073281 0.06674530 0.17475197 0.2621079 0.3056081 0.3497999
#> abs_risk[6] 0.4539580 0.09068393 0.28175834 0.3981905 0.4501231 0.5089003
#> abs_risk[7] 0.3469780 0.05855693 0.22844419 0.3074468 0.3507964 0.3866173
#> abs_risk[8] 0.3027778 0.04400385 0.20393230 0.2763545 0.3040172 0.3321503
#>                 97.5%     Rhat n.eff
#> abs_risk[1] 0.3900000 1.000000     1
#> abs_risk[2] 0.5096816 1.052232    58
#> abs_risk[3] 0.5255282 1.022257  1700
#> abs_risk[4] 0.7064120 1.674098     6
#> abs_risk[5] 0.4398533 1.010856   620
#> abs_risk[6] 0.6471372 1.031084   110
#> abs_risk[7] 0.4547461 1.046622    49
#> abs_risk[8] 0.3838015 1.029957   140
#> 
#> $SUCRA
#>               mean        sd      2.5%       25%       50%       75%     97.5%
#> SUCRA[1] 0.2926667 0.1741526 0.0000000 0.1428571 0.2857143 0.4285714 0.7142857
#> SUCRA[2] 0.8087143 0.2874268 0.0000000 0.7142857 1.0000000 1.0000000 1.0000000
#> SUCRA[3] 0.6973333 0.2851153 0.0000000 0.5714286 0.8571429 0.8571429 1.0000000
#> SUCRA[4] 0.2218095 0.2402735 0.0000000 0.0000000 0.1428571 0.4285714 0.8571429
#> SUCRA[5] 0.6525714 0.2372588 0.1428571 0.4285714 0.7142857 0.8571429 1.0000000
#> SUCRA[6] 0.1425238 0.1745056 0.0000000 0.0000000 0.1428571 0.1428571 0.5714286
#> SUCRA[7] 0.4943810 0.2162080 0.1428571 0.2857143 0.4285714 0.5714286 0.8571429
#> SUCRA[8] 0.6900000 0.1732202 0.2857143 0.5714286 0.7142857 0.8571429 1.0000000
#>              Rhat n.eff
#> SUCRA[1] 1.091660    28
#> SUCRA[2] 1.076468    41
#> SUCRA[3] 1.016139   170
#> SUCRA[4] 1.333219    10
#> SUCRA[5] 1.004659  1700
#> SUCRA[6] 1.035011   150
#> SUCRA[7] 1.011073   240
#> SUCRA[8] 1.022327   120
#> 
#> $effectiveness
#>                           mean         sd 2.5% 25% 50% 75% 97.5%     Rhat n.eff
#> effectiveness[1,1] 0.000000000 0.00000000    0   0   0   0     0 1.000000     1
#> effectiveness[2,1] 0.549000000 0.49767616    0   0   1   1     1 1.058306    39
#> effectiveness[3,1] 0.217000000 0.41227134    0   0   0   0     1 1.028147   100
#> effectiveness[4,1] 0.004333333 0.06569623    0   0   0   0     0 1.297669   230
#> effectiveness[5,1] 0.121333333 0.32656868    0   0   0   0     1 1.041614   110
#> effectiveness[6,1] 0.001333333 0.03649657    0   0   0   0     0 1.165939  1700
#> effectiveness[7,1] 0.021000000 0.14340800    0   0   0   0     0 1.001073  3000
#> effectiveness[8,1] 0.086000000 0.28041079    0   0   0   0     1 1.024145   260
#> effectiveness[1,2] 0.006000000 0.07723981    0   0   0   0     0 1.145043   460
#> effectiveness[2,2] 0.168666667 0.37451966    0   0   0   0     1 1.011763   290
#> effectiveness[3,2] 0.306666667 0.46118664    0   0   0   1     1 1.012775   180
#> effectiveness[4,2] 0.023333333 0.15098506    0   0   0   0     0 1.198325    86
#> effectiveness[5,2] 0.196000000 0.39703469    0   0   0   0     1 1.002416  1100
#> effectiveness[6,2] 0.008000000 0.08909908    0   0   0   0     0 1.233584   190
#> effectiveness[7,2] 0.085333333 0.27942366    0   0   0   0     1 1.064372    97
#> effectiveness[8,2] 0.206000000 0.40449789    0   0   0   0     1 1.002487  1000
#> effectiveness[1,3] 0.020666667 0.14228951    0   0   0   0     0 1.061866   370
#> effectiveness[2,3] 0.065666667 0.24773981    0   0   0   0     1 1.018987   410
#> effectiveness[3,3] 0.143333333 0.35047087    0   0   0   0     1 1.005188   710
#> effectiveness[4,3] 0.050000000 0.21798128    0   0   0   0     1 1.147957    63
#> effectiveness[5,3] 0.251000000 0.43366080    0   0   0   1     1 1.008556   300
#> effectiveness[6,3] 0.014000000 0.11751001    0   0   0   0     0 1.050846   660
#> effectiveness[7,3] 0.135666667 0.34249135    0   0   0   0     1 1.001348  2400
#> effectiveness[8,3] 0.319666667 0.46642513    0   0   0   1     1 1.000910  3000
#> effectiveness[1,4] 0.085666667 0.27991786    0   0   0   0     1 1.014992   410
#> effectiveness[2,4] 0.054333333 0.22671205    0   0   0   0     1 1.045098   200
#> effectiveness[3,4] 0.097666667 0.29691291    0   0   0   0     1 1.000924  3000
#> effectiveness[4,4] 0.073333333 0.26072632    0   0   0   0     1 1.096917    71
#> effectiveness[5,4] 0.180666667 0.38480590    0   0   0   0     1 1.002452  1200
#> effectiveness[6,4] 0.025666667 0.15816519    0   0   0   0     1 1.000653  3000
#> effectiveness[7,4] 0.218000000 0.41295623    0   0   0   0     1 1.002076  1300
#> effectiveness[8,4] 0.264666667 0.44122910    0   0   0   1     1 1.003836   600
#> effectiveness[1,5] 0.221000000 0.41498965    0   0   0   0     1 1.024606   120
#> effectiveness[2,5] 0.042666667 0.20213818    0   0   0   0     1 1.017451   670
#> effectiveness[3,5] 0.073000000 0.26017987    0   0   0   0     1 1.003549  1800
#> effectiveness[4,5] 0.105333333 0.30703362    0   0   0   0     1 1.033377   150
#> effectiveness[5,5] 0.121333333 0.32656868    0   0   0   0     1 1.000763  3000
#> effectiveness[6,5] 0.062000000 0.24119575    0   0   0   0     1 1.006769  1200
#> effectiveness[7,5] 0.282333333 0.45020971    0   0   0   1     1 1.003479   670
#> effectiveness[8,5] 0.092333333 0.28954418    0   0   0   0     1 1.020376   280
#> effectiveness[1,6] 0.343333333 0.47490076    0   0   0   1     1 1.013245   170
#> effectiveness[2,6] 0.046666667 0.21095906    0   0   0   0     1 1.021197   500
#> effectiveness[3,6] 0.068666667 0.25292861    0   0   0   0     1 1.003721  1800
#> effectiveness[4,6] 0.146000000 0.35316508    0   0   0   0     1 1.068111    58
#> effectiveness[5,6] 0.082000000 0.27441046    0   0   0   0     1 1.001464  3000
#> effectiveness[6,6] 0.116666667 0.32107619    0   0   0   0     1 1.006408   700
#> effectiveness[7,6] 0.170000000 0.37569542    0   0   0   0     1 1.001780  1600
#> effectiveness[8,6] 0.026666667 0.16113414    0   0   0   0     1 1.094696   180
#> effectiveness[1,7] 0.217000000 0.41227134    0   0   0   0     1 1.046611    65
#> effectiveness[2,7] 0.039000000 0.19362721    0   0   0   0     1 1.085120   140
#> effectiveness[3,7] 0.058666667 0.23503894    0   0   0   0     1 1.051734   170
#> effectiveness[4,7] 0.231000000 0.42154268    0   0   0   0     1 1.033903    84
#> effectiveness[5,7] 0.037000000 0.18879322    0   0   0   0     1 1.012071  1100
#> effectiveness[6,7] 0.348333333 0.47652168    0   0   0   1     1 1.146154    19
#> effectiveness[7,7] 0.064333333 0.24538669    0   0   0   0     1 1.002902  2400
#> effectiveness[8,7] 0.004666667 0.06816478    0   0   0   0     0 1.017049  3000
#> effectiveness[1,8] 0.106333333 0.30831517    0   0   0   0     1 1.160916    32
#> effectiveness[2,8] 0.034000000 0.18125935    0   0   0   0     1 1.088295   160
#> effectiveness[3,8] 0.035000000 0.18381040    0   0   0   0     1 1.029968   470
#> effectiveness[4,8] 0.366666667 0.48197475    0   0   0   1     1 1.423861     9
#> effectiveness[5,8] 0.010666667 0.10274438    0   0   0   0     0 1.034076  1300
#> effectiveness[6,8] 0.424000000 0.49427263    0   0   0   1     1 1.131529    20
#> effectiveness[7,8] 0.023333333 0.15098506    0   0   0   0     0 1.005026  3000
#> effectiveness[8,8] 0.000000000 0.00000000    0   0   0   0     0 1.000000     1
#> 
#> $D
#> [1] 0
#> 
#> attr(,"class")
#> [1] "run_metareg"
# }