Skip to contents

Performs a one-stage pairwise or network meta-regression while addressing aggregate binary or continuous missing participant outcome data via the pattern-mixture model.

Usage

run_metareg(
  full,
  covariate,
  covar_assumption,
  cov_value,
  n_chains,
  n_iter,
  n_burnin,
  n_thin,
  inits = NULL
)

Arguments

full

An object of S3 class run_model. See 'Value' in run_model.

covariate

A numeric vector or matrix for a trial-specific covariate that is a potential effect modifier. See 'Details'.

covar_assumption

Character string indicating the structure of the intervention-by-covariate interaction, as described in Cooper et al. (2009). Set covar_assumption equal to "exchangeable", "independent", or "common".

cov_value

Numeric for the covariate value of interest.

n_chains

Positive integer specifying the number of chains for the MCMC sampling; an argument of the jags function of the R-package R2jags. The default argument is 2.

n_iter

Positive integer specifying the number of Markov chains for the MCMC sampling; an argument of the jags function of the R-package R2jags. The default argument is 10000.

n_burnin

Positive integer specifying the number of iterations to discard at the beginning of the MCMC sampling; an argument of the jags function of the R-package R2jags. The default argument is 1000.

n_thin

Positive integer specifying the thinning rate for the MCMC sampling; an argument of the jags function of the R-package R2jags. The default argument is 1.

inits

A list with the initial values for the parameters; an argument of the jags function of the R-package R2jags. The default argument is NULL, and JAGS generates the initial values.

Value

A list of R2jags outputs on the summaries of the posterior distribution, and the Gelman-Rubin convergence diagnostic (Gelman et al., 1992) for the following monitored parameters for a fixed-effect pairwise meta-analysis:

EM

The estimated summary effect measure (according to the argument measure defined in run_model).

beta_all

The estimated regression coefficient for all possible pairwise comparisons according to the argument covar_assumption.

dev_o

The deviance contribution of each trial-arm based on the observed outcome.

hat_par

The fitted outcome at each trial-arm.

phi

The informative missingness parameter.

For a fixed-effect network meta-analysis, the output additionally includes:

SUCRA

The surface under the cumulative ranking (SUCRA) curve for each intervention.

effectiveneness

The ranking probability of each intervention for every rank.

For a random-effects pairwise meta-analysis, the output additionally includes the following elements:

EM_pred

The predicted summary effect measure (according to the argument measure defined in run_model).

delta

The estimated trial-specific effect measure (according to the argument measure defined in run_model). For a multi-arm trial, we estimate T-1 effects, where T is the number of interventions in the trial.

tau

The between-trial standard deviation.

In network meta-analysis, EM and EM_pred refer to all possible pairwise comparisons of interventions in the network. Furthermore, tau is typically assumed to be common for all observed comparisons in the network. For a multi-arm trial, we estimate a total T-1 of delta for comparisons with the baseline intervention of the trial (found in the first column of the element t), with T being the number of interventions in the trial.

Furthermore, the output includes the following elements:

abs_risk

The adjusted absolute risks for each intervention. This appears only when measure = "OR", measure = "RR", or measure = "RD".

leverage_o

The leverage for the observed outcome at each trial-arm.

sign_dev_o

The sign of the difference between observed and fitted outcome at each trial-arm.

model_assessment

A data-frame on the measures of model assessment: deviance information criterion, number of effective parameters, and total residual deviance.

jagsfit

An object of S3 class jags with the posterior results on all monitored parameters to be used in the mcmc_diagnostics function.

The run_metareg function also returns the arguments data, measure, model, assumption, covariate, covar_assumption, n_chains, n_iter, n_burnin, and n_thin to be inherited by other relevant functions of the package.

Details

run_metareg inherits the arguments data, measure, model, assumption, heter_prior, mean_misspar, var_misspar, D, ref, indic, and base_risk from run_model (now contained in the argument full). This prevents specifying a different Bayesian model from that considered in run_model. Therefore, the user needs first to apply run_model, and then use run_metareg (see 'Examples').

The model runs in JAGS and the progress of the simulation appears on the R console. The output of run_metareg is used as an S3 object by other functions of the package to be processed further and provide an end-user-ready output. The model is updated until convergence using the autojags function of the R-package R2jags with 2 updates and number of iterations and thinning equal to n_iter and n_thin, respectively.

The models described in Spineli et al. (2021), and Spineli (2019) have been extended to incorporate one study-level covariate variable following the assumptions of Cooper et al. (2009) for the structure of the intervention-by-covariate interaction. The covariate can be either a numeric vector or matrix with columns equal to the maximum number of arms in the dataset.

References

Cooper NJ, Sutton AJ, Morris D, Ades AE, Welton NJ. Addressing between-study heterogeneity and inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillation. Stat Med 2009;28(14):1861–81. doi: 10.1002/sim.3594

Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci 1992;7(4):457–72. doi: 10.1214/ss/1177011136

Spineli LM, Kalyvas C, Papadimitropoulou K. Continuous(ly) missing outcome data in network meta-analysis: a one-stage pattern-mixture model approach. Stat Methods Med Res 2021;30(4):958–75. doi: 10.1177/0962280220983544

Spineli LM. An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis. BMC Med Res Methodol 2019;19(1):86. doi: 10.1186/s12874-019-0731-y

See also

Author

Loukia M. Spineli

Examples

data("nma.baker2009")

# Read results from 'run_model' (using the default arguments)
res <- readRDS(system.file('extdata/res_baker.rds', package = 'rnmamod'))

# Publication year
pub_year <- c(1996, 1998, 1999, 2000, 2000, 2001, rep(2002, 5), 2003, 2003,
              rep(2005, 4), 2006, 2006, 2007, 2007)

# \donttest{
# Perform a random-effects network meta-regression (exchangeable structure)
# Note: Ideally, set 'n_iter' to 10000 and 'n_burnin' to 1000
run_metareg(full = res,
            covariate = pub_year,
            covar_assumption = "exchangeable",
            cov_value = 2007,
            n_chains = 3,
            n_iter = 1000,
            n_burnin = 100,
            n_thin = 1)
#> **Fixed baseline risk assigned**
#> JAGS generates initial values for the parameters.
#> Running the model ...
#> module glm loaded
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 100
#>    Unobserved stochastic nodes: 157
#>    Total graph size: 2824
#> 
#> Initializing model
#> 
#> ... Updating the model until convergence
#> $EM
#>                mean        sd       2.5%         25%           50%         75%
#> EM[2,1] -0.65757878 0.7395046 -2.0241156 -1.06197082 -0.6430021227 -0.31245951
#> EM[3,1] -0.46843907 0.6586888 -1.7306584 -0.83509556 -0.4719796859 -0.13561941
#> EM[4,1]  0.16645548 0.5077501 -0.7460444 -0.16024993  0.1353123703  0.45822906
#> EM[5,1] -0.40729098 0.3664670 -1.2001788 -0.62520488 -0.3962392697 -0.15816487
#> EM[6,1]  0.19235678 0.4139407 -0.5565004 -0.09201090  0.1826985963  0.44253398
#> EM[7,1] -0.24844435 0.2677228 -0.7642920 -0.43138040 -0.2585782665 -0.06930978
#> EM[8,1] -0.41590065 0.2192633 -0.9046767 -0.54787508 -0.4071724066 -0.26760980
#> EM[3,2]  0.18913971 0.7937865 -1.4172639 -0.19646422  0.1610743463  0.58131797
#> EM[4,2]  0.82403426 0.8297251 -0.7115464  0.31207533  0.8108848768  1.30952799
#> EM[5,2]  0.25028779 0.7935551 -1.5230658 -0.13079903  0.2643350368  0.71790437
#> EM[6,2]  0.84993555 0.7584778 -0.5805897  0.37529855  0.8255721591  1.29944656
#> EM[7,2]  0.40913443 0.7735805 -1.2342719 -0.01186701  0.4025832735  0.86655911
#> EM[8,2]  0.24167812 0.7457844 -1.4061010 -0.09048099  0.2566115243  0.64881933
#> EM[4,3]  0.63489455 0.7478599 -0.7588922  0.13423698  0.6144717870  1.06143045
#> EM[5,3]  0.06114809 0.7226005 -1.6087555 -0.27010974  0.1026500406  0.47656064
#> EM[6,3]  0.66079585 0.7024461 -0.6470542  0.19631537  0.6382974412  1.06165961
#> EM[7,3]  0.21999472 0.6748497 -1.1837191 -0.15457923  0.2290062047  0.62259807
#> EM[8,3]  0.05253842 0.6785250 -1.4968489 -0.27701542  0.0914778138  0.44622974
#> EM[5,4] -0.57374646 0.6424465 -2.0952163 -0.93138655 -0.4951134281 -0.14634755
#> EM[6,4]  0.02590130 0.5481084 -1.0133334 -0.31740158  0.0116749957  0.36101868
#> EM[7,4] -0.41489983 0.5176248 -1.6054330 -0.69254751 -0.3637657550 -0.11295525
#> EM[8,4] -0.58235613 0.5438184 -1.8684268 -0.87184547 -0.5262784763 -0.20716388
#> EM[6,5]  0.59964776 0.5397228 -0.2665962  0.20581932  0.5310393954  0.90872270
#> EM[7,5]  0.15884663 0.4280596 -0.5997154 -0.12893971  0.1153705580  0.40944708
#> EM[8,5] -0.00860967 0.4010973 -0.7830106 -0.28097585  0.0009095145  0.23378745
#> EM[7,6] -0.44080113 0.4203450 -1.4257215 -0.66997929 -0.4080870803 -0.17586832
#> EM[8,6] -0.60825743 0.4622685 -1.6640572 -0.86733626 -0.5834568072 -0.29431439
#> EM[8,7] -0.16745630 0.3059773 -0.8097014 -0.35930097 -0.1587161515  0.04267481
#>               97.5%     Rhat n.eff
#> EM[2,1]  0.89815897 1.038106   400
#> EM[3,1]  0.98057758 1.027550  1400
#> EM[4,1]  1.30244474 1.221528    14
#> EM[5,1]  0.27611421 1.012542  1100
#> EM[6,1]  1.09216959 1.076480    33
#> EM[7,1]  0.29706315 1.067665    39
#> EM[8,1] -0.02790323 1.030215   180
#> EM[3,2]  1.84461947 1.034421  1300
#> EM[4,2]  2.51964376 1.083895    45
#> EM[5,2]  1.67985089 1.030779   360
#> EM[6,2]  2.37994933 1.031557   120
#> EM[7,2]  1.83449453 1.042241   210
#> EM[8,2]  1.50761386 1.042347   450
#> EM[4,3]  2.29403694 1.079629    35
#> EM[5,3]  1.39901281 1.033879  1300
#> EM[6,3]  2.22545691 1.028937   130
#> EM[7,3]  1.51744963 1.029307   310
#> EM[8,3]  1.30237214 1.030306   770
#> EM[5,4]  0.48359506 1.127987    23
#> EM[6,4]  1.17640965 1.043853    54
#> EM[7,4]  0.58413693 1.109237    24
#> EM[8,4]  0.28083034 1.224849    14
#> EM[6,5]  1.81829134 1.043386    70
#> EM[7,5]  1.10872731 1.035165   160
#> EM[8,5]  0.82806598 1.018084   220
#> EM[7,6]  0.31486794 1.023815   160
#> EM[8,6]  0.16213429 1.088831    30
#> EM[8,7]  0.39110902 1.091261    28
#> 
#> $EM_pred
#>                      mean        sd       2.5%         25%          50%
#> EM.pred[2,1] -0.657178729 0.7549179 -2.0543769 -1.08551068 -0.638724730
#> EM.pred[3,1] -0.466357809 0.6751549 -1.8157785 -0.84586265 -0.455521310
#> EM.pred[4,1]  0.165878044 0.5290396 -0.7861184 -0.17995140  0.139480844
#> EM.pred[5,1] -0.405531043 0.3939568 -1.2378025 -0.64271818 -0.398616942
#> EM.pred[6,1]  0.194519609 0.4384240 -0.5968222 -0.10145768  0.185853312
#> EM.pred[7,1] -0.250877621 0.3080127 -0.8722290 -0.45258975 -0.258086043
#> EM.pred[8,1] -0.411696312 0.2618573 -0.9958586 -0.55115429 -0.398713900
#> EM.pred[3,2]  0.189901223 0.8112030 -1.4623329 -0.19826241  0.168117064
#> EM.pred[4,2]  0.824081313 0.8377706 -0.7364427  0.31327445  0.800936810
#> EM.pred[5,2]  0.248972094 0.8055027 -1.5449744 -0.13888876  0.242374372
#> EM.pred[6,2]  0.852868616 0.7721753 -0.6339190  0.35414784  0.821759561
#> EM.pred[7,2]  0.410826141 0.7809234 -1.2050608 -0.02516902  0.400275620
#> EM.pred[8,2]  0.238564269 0.7614705 -1.3664006 -0.11215533  0.250959458
#> EM.pred[4,3]  0.638240470 0.7616434 -0.7660026  0.13179707  0.606796318
#> EM.pred[5,3]  0.064058002 0.7362924 -1.6648170 -0.28722303  0.104016410
#> EM.pred[6,3]  0.663560685 0.7208449 -0.6546991  0.18538752  0.629122993
#> EM.pred[7,3]  0.217121293 0.6880583 -1.1984125 -0.16541628  0.224296549
#> EM.pred[8,3]  0.049420356 0.6929085 -1.6002084 -0.29305628  0.084885280
#> EM.pred[5,4] -0.572566059 0.6592668 -2.0837326 -0.94608024 -0.497684039
#> EM.pred[6,4]  0.019343797 0.5679646 -1.0786014 -0.33668850  0.007245999
#> EM.pred[7,4] -0.416610037 0.5420876 -1.5995074 -0.71912934 -0.363832660
#> EM.pred[8,4] -0.582622276 0.5641880 -1.8975487 -0.88293724 -0.524455484
#> EM.pred[6,5]  0.600801424 0.5619203 -0.3175890  0.19770720  0.535698522
#> EM.pred[7,5]  0.162908919 0.4583155 -0.6823526 -0.14188570  0.119396067
#> EM.pred[8,5] -0.005021523 0.4243393 -0.8447939 -0.27654021  0.006239964
#> EM.pred[7,6] -0.440111922 0.4429735 -1.4300511 -0.68240077 -0.401574960
#> EM.pred[8,6] -0.603667311 0.4783740 -1.6787635 -0.88283268 -0.586982893
#> EM.pred[8,7] -0.164818812 0.3405547 -0.8599676 -0.38814558 -0.150630706
#>                      75%      97.5%     Rhat n.eff
#> EM.pred[2,1] -0.30350483 0.94048346 1.037273   410
#> EM.pred[3,1] -0.12787785 0.98998387 1.025884  1600
#> EM.pred[4,1]  0.46312309 1.33251628 1.189788    15
#> EM.pred[5,1] -0.14795134 0.32605055 1.011564   790
#> EM.pred[6,1]  0.46834243 1.15178824 1.067742    39
#> EM.pred[7,1] -0.04533506 0.35289990 1.047303    54
#> EM.pred[8,1] -0.24325082 0.05186116 1.022403   280
#> EM.pred[3,2]  0.59444386 1.84904416 1.032333  1000
#> EM.pred[4,2]  1.30665348 2.52407451 1.079644    45
#> EM.pred[5,2]  0.72615154 1.71467207 1.030693   360
#> EM.pred[6,2]  1.30767249 2.42732673 1.029199   130
#> EM.pred[7,2]  0.88532899 1.86199985 1.038862   180
#> EM.pred[8,2]  0.66351396 1.55210899 1.039593   440
#> EM.pred[4,3]  1.07906992 2.29660244 1.077929    35
#> EM.pred[5,3]  0.48503397 1.45521968 1.032996  1600
#> EM.pred[6,3]  1.07514929 2.28005161 1.027480   120
#> EM.pred[7,3]  0.62604608 1.52280966 1.028641   310
#> EM.pred[8,3]  0.44585343 1.36850853 1.029641   900
#> EM.pred[5,4] -0.12940637 0.55485988 1.118532    24
#> EM.pred[6,4]  0.36727346 1.19773291 1.043582    54
#> EM.pred[7,4] -0.09502941 0.63141116 1.097303    26
#> EM.pred[8,4] -0.20255875 0.37178195 1.209293    14
#> EM.pred[6,5]  0.92442067 1.88767499 1.042274    72
#> EM.pred[7,5]  0.43964100 1.15842831 1.033655   150
#> EM.pred[8,5]  0.24853888 0.88209196 1.016147   270
#> EM.pred[7,6] -0.16083893 0.33961065 1.024716   170
#> EM.pred[8,6] -0.27705022 0.18982736 1.075363    34
#> EM.pred[8,7]  0.06382399 0.45225674 1.077762    33
#> 
#> $tau
#>        mean          sd        2.5%         25%         50%         75% 
#>  0.12070228  0.08303623  0.01281009  0.04718787  0.10948935  0.17368671 
#>       97.5%        Rhat       n.eff 
#>  0.31410698  1.22908561 16.00000000 
#> 
#> $delta
#>                    mean        sd       2.5%        25%         50%         75%
#> delta[1,2]  -0.12558562 0.3400602 -0.7762024 -0.3421884 -0.13695946  0.06264948
#> delta[2,2]  -0.09437053 0.3274403 -0.6927463 -0.3072092 -0.11015391  0.09551814
#> delta[3,2]  -0.46814195 0.1952787 -0.8697350 -0.5937392 -0.46969976 -0.34212954
#> delta[4,2]  -0.44157328 0.1661088 -0.7761040 -0.5398504 -0.44679066 -0.33810090
#> delta[5,2]  -0.44305047 0.2067894 -0.8350323 -0.5821088 -0.44790633 -0.30761546
#> delta[6,2]  -0.36972062 0.2001951 -0.7071617 -0.5164826 -0.38531877 -0.23098836
#> delta[7,2]  -0.43824977 0.1488294 -0.7442425 -0.5299702 -0.43918143 -0.34027450
#> delta[8,2]  -0.41889486 0.1792640 -0.7417543 -0.5441387 -0.42195860 -0.30242578
#> delta[9,2]  -0.44286787 0.1805211 -0.7778997 -0.5669756 -0.44816332 -0.32043773
#> delta[10,2] -0.05620131 0.3383816 -0.6433277 -0.2967496 -0.06993655  0.13515027
#> delta[11,2] -0.22136348 0.2737415 -0.7711080 -0.4160451 -0.24391156 -0.01863170
#> delta[12,2] -0.10838293 0.3012719 -0.6390255 -0.3157944 -0.12061178  0.06724113
#> delta[13,2] -0.90965578 0.4222237 -1.8640943 -1.1824978 -0.85170364 -0.58310016
#> delta[14,2] -0.04739270 0.1923539 -0.4194225 -0.1725813 -0.04831724  0.07410025
#> delta[15,2] -0.18729251 0.2927552 -0.7681643 -0.3995928 -0.19835753  0.03527971
#> delta[16,2] -0.36187274 0.1474435 -0.6317830 -0.4675237 -0.36790304 -0.26241593
#> delta[17,2] -0.31645990 0.3317800 -1.0064325 -0.5527770 -0.29699668 -0.07359448
#> delta[18,2] -0.42384269 0.2869891 -0.9352663 -0.6166657 -0.46631317 -0.24032094
#> delta[19,2] -0.40981609 0.2902499 -0.9236976 -0.6076459 -0.45079700 -0.21521157
#> delta[20,2] -0.43219534 0.2051551 -0.8294551 -0.5735267 -0.43807961 -0.29101748
#> delta[21,2] -0.51600433 0.1894489 -0.9616227 -0.6224025 -0.49475372 -0.39379227
#> delta[9,3]  -0.50035137 0.1625795 -0.8556974 -0.5957370 -0.48870154 -0.39851331
#> delta[10,3] -0.39176619 0.2813880 -0.8598081 -0.5955723 -0.43844162 -0.21147413
#> delta[12,3] -0.32427418 0.2878641 -0.7763411 -0.5317148 -0.36275644 -0.13777732
#> delta[13,3] -0.69333801 0.3588249 -1.4213504 -0.9439811 -0.67117873 -0.46107400
#> delta[19,3] -0.47768364 0.2260259 -0.9750575 -0.6175349 -0.47159881 -0.33112589
#> delta[10,4] -0.45887506 0.2047883 -0.8943369 -0.5886639 -0.45760168 -0.32065404
#> delta[12,4] -0.38555241 0.2094195 -0.7585588 -0.5316482 -0.39209514 -0.24695177
#> delta[13,4] -0.26156222 0.3090968 -0.8817016 -0.4601911 -0.29555029 -0.01886715
#>                   97.5%     Rhat n.eff
#> delta[1,2]   0.63279452 1.197047    15
#> delta[2,2]   0.64582052 1.232110    13
#> delta[3,2]  -0.09312607 1.100933    28
#> delta[4,2]  -0.10943073 1.037414    97
#> delta[5,2]  -0.03168465 1.080490    38
#> delta[6,2]   0.04499090 1.123211    22
#> delta[7,2]  -0.14923267 1.076015    40
#> delta[8,2]  -0.06223054 1.121556    24
#> delta[9,2]  -0.07814151 1.104070    29
#> delta[10,2]  0.71134765 1.293109    11
#> delta[11,2]  0.29120182 1.062155    44
#> delta[12,2]  0.56605746 1.256274    12
#> delta[13,2] -0.25106184 1.029908    83
#> delta[14,2]  0.31848517 1.026166    84
#> delta[15,2]  0.35126178 1.036701    70
#> delta[16,2] -0.06006461 1.147048    19
#> delta[17,2]  0.26918811 1.022155    94
#> delta[18,2]  0.19531759 1.319930    11
#> delta[19,2]  0.19233523 1.321167    11
#> delta[20,2] -0.03125860 1.073077    38
#> delta[21,2] -0.17379907 1.046126    65
#> delta[9,3]  -0.19119814 1.035898    84
#> delta[10,3]  0.20595018 1.405205     9
#> delta[12,3]  0.30097488 1.395843     9
#> delta[13,3]  0.03608919 1.016248   930
#> delta[19,3] -0.06481464 1.055189    61
#> delta[10,4] -0.07393417 1.107465    27
#> delta[12,4]  0.03080194 1.117481    25
#> delta[13,4]  0.30286147 1.026703   130
#> 
#> $beta_all
#>                       mean         sd        2.5%          25%           50%
#> beta.all[2,1]  0.052593468 0.15010898 -0.20047772 -0.006449407  0.0392752427
#> beta.all[3,1]  0.046265296 0.13060266 -0.21350927 -0.010345222  0.0406952692
#> beta.all[4,1]  0.061647548 0.06074125 -0.04529324  0.022838509  0.0560815346
#> beta.all[5,1] -0.005977732 0.08309959 -0.20480713 -0.046974033  0.0069865349
#> beta.all[6,1]  0.091819280 0.08628304 -0.03892478  0.034559023  0.0786013782
#> beta.all[7,1]  0.042537256 0.04228495 -0.04225052  0.014558859  0.0428090708
#> beta.all[8,1]  0.011794668 0.04519457 -0.09265872 -0.013262576  0.0156096822
#> beta.all[3,2] -0.006328172 0.16488696 -0.38406156 -0.050257296 -0.0007848425
#> beta.all[4,2]  0.009054080 0.15283154 -0.31386134 -0.030604185  0.0066609522
#> beta.all[5,2] -0.058571201 0.16952675 -0.52863305 -0.100528353 -0.0214209447
#> beta.all[6,2]  0.039225812 0.14552077 -0.26758184 -0.014184778  0.0209492894
#> beta.all[7,2] -0.010056213 0.15020912 -0.36646523 -0.044087340  0.0001661499
#> beta.all[8,2] -0.040798800 0.15702321 -0.43829260 -0.079056775 -0.0125790410
#> beta.all[4,3]  0.015382252 0.13201356 -0.26563822 -0.029899671  0.0077683476
#> beta.all[5,3] -0.052243029 0.15098875 -0.44002409 -0.101656787 -0.0172604283
#> beta.all[6,3]  0.045553984 0.13634973 -0.21847521 -0.012676400  0.0243764059
#> beta.all[7,3] -0.003728041 0.13163109 -0.29696688 -0.043973580  0.0008528330
#> beta.all[8,3] -0.034470628 0.13896708 -0.37833832 -0.078945111 -0.0135401643
#> beta.all[5,4] -0.067625280 0.10791945 -0.35318922 -0.113529856 -0.0391094618
#> beta.all[6,4]  0.030171732 0.08814842 -0.13306691 -0.016030798  0.0148181279
#> beta.all[7,4] -0.019110292 0.06862062 -0.17663623 -0.053235776 -0.0096025915
#> beta.all[8,4] -0.049852880 0.07542279 -0.24242696 -0.086153224 -0.0342701038
#> beta.all[6,5]  0.097797012 0.12439311 -0.05337798  0.006961491  0.0620525615
#> beta.all[7,5]  0.048514988 0.08742121 -0.08996914 -0.005152451  0.0292393613
#> beta.all[8,5]  0.017772400 0.08155056 -0.12698435 -0.026253553  0.0052229866
#> beta.all[7,6] -0.049282024 0.08981673 -0.26769994 -0.094549615 -0.0286712818
#> beta.all[8,6] -0.080024612 0.10335586 -0.33528771 -0.131433620 -0.0524290713
#> beta.all[8,7] -0.030742588 0.05650043 -0.15182516 -0.064723766 -0.0221587123
#>                         75%      97.5%     Rhat n.eff
#> beta.all[2,1]  0.0922645360 0.41110520 1.103723   310
#> beta.all[3,1]  0.0911222031 0.33438852 1.040792   610
#> beta.all[4,1]  0.0953696451 0.19994722 1.094125    28
#> beta.all[5,1]  0.0478710858 0.12335135 1.167515    19
#> beta.all[6,1]  0.1374164502 0.29308940 1.050099    98
#> beta.all[7,1]  0.0696392827 0.12807849 1.003906   810
#> beta.all[8,1]  0.0423729541 0.09332831 1.116088    24
#> beta.all[3,2]  0.0499194998 0.31959757 1.063906   960
#> beta.all[4,2]  0.0640267647 0.29080329 1.095925   470
#> beta.all[5,2]  0.0158134796 0.17081482 1.149120    40
#> beta.all[6,2]  0.0944343715 0.34874074 1.064299  3000
#> beta.all[7,2]  0.0424799020 0.24689818 1.105147   450
#> beta.all[8,2]  0.0204551632 0.19847751 1.128124    88
#> beta.all[4,3]  0.0637165569 0.30899682 1.042653   430
#> beta.all[5,3]  0.0171308988 0.18461958 1.090985    49
#> beta.all[6,3]  0.0934286957 0.36544212 1.026208  1100
#> beta.all[7,3]  0.0446214452 0.26500575 1.040891  1000
#> beta.all[8,3]  0.0230765307 0.20920250 1.062474   140
#> beta.all[5,4]  0.0015017330 0.08561596 1.176593    19
#> beta.all[6,4]  0.0708799404 0.24036841 1.030611   390
#> beta.all[7,4]  0.0179349674 0.11464046 1.055755    44
#> beta.all[8,4] -0.0007061761 0.06389523 1.136538    22
#> beta.all[6,5]  0.1591226352 0.41256337 1.132356    24
#> beta.all[7,5]  0.0933442566 0.26077571 1.173264    19
#> beta.all[8,5]  0.0522889137 0.22376767 1.063832    63
#> beta.all[7,6]  0.0058791454 0.09186261 1.046772   150
#> beta.all[8,6] -0.0061285243 0.05536143 1.089172    44
#> beta.all[8,7]  0.0039535783 0.07331461 1.092578    30
#> 
#> $dev_o
#>                  mean        sd         2.5%        25%       50%       75%
#> dev.o[1,1]  2.1560497 2.2747969 0.0061197712 0.43405078 1.4501793 3.0957344
#> dev.o[2,1]  0.8865045 1.2130370 0.0009036052 0.09566198 0.4351175 1.1839175
#> dev.o[3,1]  0.8708556 1.1961560 0.0006440374 0.08853294 0.3963623 1.1775527
#> dev.o[4,1]  0.8402122 1.2166884 0.0010862534 0.07308596 0.3592601 1.0877571
#> dev.o[5,1]  0.6645889 0.9804518 0.0005675829 0.05831306 0.2860482 0.8537939
#> dev.o[6,1]  1.0779171 1.3637956 0.0013901128 0.12970078 0.5725763 1.4974979
#> dev.o[7,1]  0.8113394 1.1209754 0.0009431878 0.08222272 0.3715326 1.0947160
#> dev.o[8,1]  0.6934740 0.9836053 0.0005746768 0.07457337 0.3114932 0.8941400
#> dev.o[9,1]  0.7551912 1.0340743 0.0007917253 0.07459973 0.3565831 1.0229403
#> dev.o[10,1] 0.5835094 0.8151358 0.0008845579 0.06188607 0.2672818 0.7549711
#> dev.o[11,1] 0.7499784 1.0794413 0.0007730863 0.07421713 0.3349313 0.9794617
#> dev.o[12,1] 1.0746712 1.3117684 0.0014807259 0.15911638 0.6143076 1.4913969
#> dev.o[13,1] 1.4794957 1.8933840 0.0015279714 0.19069689 0.7622863 2.1045998
#> dev.o[14,1] 0.8344236 1.1644638 0.0007684336 0.08898561 0.4058530 1.1135205
#> dev.o[15,1] 0.9236066 1.2856320 0.0008413893 0.10199374 0.4384865 1.2271591
#> dev.o[16,1] 1.2349815 1.6288747 0.0010158475 0.12276835 0.6004523 1.6921025
#> dev.o[17,1] 1.9694373 2.2695713 0.0023537923 0.29799285 1.1868412 2.8485628
#> dev.o[18,1] 1.2542182 1.5901008 0.0017861032 0.13727754 0.6320635 1.7599798
#> dev.o[19,1] 1.9040038 1.8307488 0.0068215383 0.51406330 1.3865702 2.8372029
#> dev.o[20,1] 0.7726423 1.0919438 0.0008734432 0.08025956 0.3409281 0.9943742
#> dev.o[21,1] 1.3720691 1.7131767 0.0021944172 0.18965109 0.7184204 1.9060450
#> dev.o[1,2]  2.8519740 1.7922883 0.5495649569 1.52263402 2.4829695 3.7738469
#> dev.o[2,2]  0.8898657 1.2573182 0.0008393223 0.08629374 0.4167965 1.1831830
#> dev.o[3,2]  0.7936156 1.0835555 0.0010347130 0.08402599 0.3709873 1.0525676
#> dev.o[4,2]  0.8955108 1.2668727 0.0006982305 0.08746247 0.4232576 1.1837070
#> dev.o[5,2]  0.5759540 0.8192362 0.0005060435 0.05589630 0.2573487 0.7802131
#> dev.o[6,2]  1.2532746 1.4903882 0.0019700984 0.15717720 0.6784907 1.8518041
#> dev.o[7,2]  0.8652072 1.2260839 0.0006220328 0.08945793 0.3902779 1.1533076
#> dev.o[8,2]  0.6521836 0.9142112 0.0005014251 0.06093938 0.2914749 0.8811683
#> dev.o[9,2]  0.6627143 0.9458511 0.0007256790 0.06420660 0.3013132 0.8793769
#> dev.o[10,2] 1.7294329 1.9020252 0.0037387438 0.30673764 1.1029046 2.5423939
#> dev.o[11,2] 0.9510833 1.4148089 0.0006287158 0.09519823 0.4023807 1.2030616
#> dev.o[12,2] 1.1111751 1.4956223 0.0015685739 0.11758073 0.5332394 1.4924883
#> dev.o[13,2] 1.0427025 1.4768151 0.0008000898 0.10282244 0.4793785 1.3684344
#> dev.o[14,2] 0.7821635 1.0999011 0.0004295030 0.07961802 0.3681982 1.0562952
#> dev.o[15,2] 0.9678904 1.3383744 0.0009284333 0.10361192 0.4350913 1.3149915
#> dev.o[16,2] 1.3099287 1.6713131 0.0020369340 0.16205104 0.6746699 1.7893776
#> dev.o[17,2] 2.2728545 2.1147994 0.0128295949 0.64710891 1.7014115 3.2994491
#> dev.o[18,2] 1.2327036 1.6139113 0.0010737803 0.12956477 0.6049387 1.6831380
#> dev.o[19,2] 0.4293190 0.5956517 0.0003872659 0.04087909 0.2041828 0.5720976
#> dev.o[20,2] 0.6914614 1.0021871 0.0006500977 0.06087130 0.3041888 0.9067656
#> dev.o[21,2] 1.3146078 1.5862540 0.0016559460 0.17022630 0.7390862 1.8748535
#> dev.o[9,3]  0.9388726 1.2605259 0.0008748094 0.09825757 0.4482231 1.2939318
#> dev.o[10,3] 0.7701822 1.0948565 0.0005870690 0.07660135 0.3332837 1.0354275
#> dev.o[12,3] 1.2428054 1.5690892 0.0015472921 0.15259396 0.6743242 1.7086676
#> dev.o[13,3] 0.9772052 1.4100000 0.0012623079 0.10801921 0.4610824 1.2871451
#> dev.o[19,3] 1.6049495 1.3337697 0.0401114181 0.61586518 1.2771723 2.2741665
#> dev.o[10,4] 1.0995241 1.3220554 0.0021077110 0.15529681 0.6010532 1.5484461
#> dev.o[12,4] 0.8565923 1.1405943 0.0010465196 0.09504678 0.4200604 1.1545940
#> dev.o[13,4] 1.0871968 1.4537834 0.0012027230 0.11982385 0.5451929 1.4446374
#>                97.5%     Rhat n.eff
#> dev.o[1,1]  8.297866 1.001150  3000
#> dev.o[2,1]  4.458940 1.006780   420
#> dev.o[3,1]  4.181724 1.002483  1000
#> dev.o[4,1]  4.329539 1.001270  2600
#> dev.o[5,1]  3.471318 1.005808   380
#> dev.o[6,1]  4.892280 1.002416  1000
#> dev.o[7,1]  3.986599 1.002912   830
#> dev.o[8,1]  3.657996 1.001809  3000
#> dev.o[9,1]  3.691421 1.001515  2000
#> dev.o[10,1] 2.935917 1.002475  1000
#> dev.o[11,1] 3.872174 1.004460   540
#> dev.o[12,1] 4.737603 1.007927   310
#> dev.o[13,1] 6.610296 1.026434    88
#> dev.o[14,1] 3.900916 1.001632  1800
#> dev.o[15,1] 4.429748 1.001130  3000
#> dev.o[16,1] 5.705568 1.001759  2800
#> dev.o[17,1] 8.140028 1.014126   160
#> dev.o[18,1] 5.745956 1.000952  3000
#> dev.o[19,1] 6.545552 1.001263  2600
#> dev.o[20,1] 4.062701 1.003923  1300
#> dev.o[21,1] 6.054748 1.012199   200
#> dev.o[1,2]  7.226351 1.002597   960
#> dev.o[2,2]  4.425779 1.000810  3000
#> dev.o[3,2]  4.002930 1.001252  2700
#> dev.o[4,2]  4.395002 1.003321   710
#> dev.o[5,2]  3.129609 1.002358  2700
#> dev.o[6,2]  5.232894 1.004226   540
#> dev.o[7,2]  4.363057 1.002325  1300
#> dev.o[8,2]  3.203703 1.001418  2200
#> dev.o[9,2]  3.323535 1.002304  2500
#> dev.o[10,2] 6.941812 1.000987  3000
#> dev.o[11,2] 4.792794 1.001468  2100
#> dev.o[12,2] 5.315607 1.004526   500
#> dev.o[13,2] 4.991795 1.001557  1900
#> dev.o[14,2] 3.914398 1.013322   410
#> dev.o[15,2] 4.797278 1.003146   760
#> dev.o[16,2] 5.978983 1.007072   470
#> dev.o[17,2] 7.823776 1.014332   160
#> dev.o[18,2] 5.811015 1.001473  3000
#> dev.o[19,2] 2.251736 1.000772  3000
#> dev.o[20,2] 3.644875 1.001266  2600
#> dev.o[21,2] 5.668013 1.007938   270
#> dev.o[9,3]  4.491149 1.006642   380
#> dev.o[10,3] 3.965978 1.009841   260
#> dev.o[12,3] 5.675115 1.004784   470
#> dev.o[13,3] 4.756649 1.001556  2200
#> dev.o[19,3] 5.038304 1.002717   900
#> dev.o[10,4] 4.849228 1.018046   160
#> dev.o[12,4] 4.046988 1.008263   390
#> dev.o[13,4] 5.326679 1.001059  3000
#> 
#> $hat_par
#>                     mean         sd        2.5%         25%        50%
#> hat.par[1,1]    1.667517  0.8120079   0.3847576   1.0560707   1.568148
#> hat.par[2,1]   50.746631  4.9251038  41.1153456  47.3201217  50.717085
#> hat.par[3,1]   45.043178  4.4925139  36.5984305  41.9992127  45.010493
#> hat.par[4,1]   42.410123  5.0252951  32.8918953  39.1180807  42.163769
#> hat.par[5,1]   17.493732  2.5137420  12.6251855  15.8409880  17.491025
#> hat.par[6,1]   44.317206  4.1114521  36.2420740  41.5021664  44.382865
#> hat.par[7,1]  157.048967  7.6162763 142.0173807 151.9943375 157.101243
#> hat.par[8,1]   68.756240  5.3595204  57.9954104  65.0925250  68.737800
#> hat.par[9,1]   89.509974  4.9470456  79.9215086  86.1731495  89.477134
#> hat.par[10,1]  78.377731  3.6573296  71.0788148  75.8856619  78.433212
#> hat.par[11,1]  75.018177  5.4637705  64.4188720  71.3274692  75.092228
#> hat.par[12,1]  76.932790  4.0389445  68.4432327  74.4158003  77.074276
#> hat.par[13,1]  48.751792  4.7802256  39.6206681  45.4265299  48.716107
#> hat.par[14,1]  34.609217  4.7583391  26.1421255  31.2478784  34.389696
#> hat.par[15,1]  35.321811  4.9760454  26.1647424  31.8191242  35.257064
#> hat.par[16,1] 303.893147 13.1242786 276.8759484 295.5256721 303.867278
#> hat.par[17,1]  10.838355  2.6091508   6.2344432   8.9777252  10.656861
#> hat.par[18,1]  21.511243  3.4063565  15.2722442  19.0736626  21.393012
#> hat.par[19,1]   3.799965  1.3097927   1.7628069   2.8397863   3.649425
#> hat.par[20,1]  23.674373  3.7381590  16.6650349  21.0948130  23.539946
#> hat.par[21,1]  31.353982  4.4787239  23.3578269  28.3183898  31.126682
#> hat.par[1,2]    1.266036  0.7039992   0.2701170   0.7262141   1.149950
#> hat.par[2,2]   45.143689  5.0160664  35.5323354  41.7075271  45.114569
#> hat.par[3,2]   30.007964  3.8201706  22.5982327  27.3004262  29.912758
#> hat.par[4,2]   43.689507  5.4891269  33.4435162  39.9084532  43.444807
#> hat.par[5,2]   11.560188  2.1110390   7.7344461  10.0738533  11.485958
#> hat.par[6,2]   34.360363  3.9546431  27.2508025  31.5207618  34.259328
#> hat.par[7,2]  196.704239  9.9457909 177.2899915 189.9637616 196.704958
#> hat.par[8,2]   51.066728  4.7618474  42.1418587  47.7708511  51.026734
#> hat.par[9,2]   81.134513  5.4975032  70.4567489  77.4245701  81.015845
#> hat.par[10,2]  72.532972  3.8692776  64.8447288  69.9285863  72.519238
#> hat.par[11,2] 117.165143  8.4821887 100.8211522 111.5690389 117.060599
#> hat.par[12,2]  82.173650  4.9607325  72.0423169  78.9599779  82.391494
#> hat.par[13,2]  26.567578  4.6747530  17.8348367  23.3147562  26.280703
#> hat.par[14,2]  31.464088  4.5461572  23.5323288  28.3462874  31.259966
#> hat.par[15,2]  33.447675  4.8179559  24.6618156  30.1103463  33.199263
#> hat.par[16,2] 246.825648 12.6062428 223.3042122 238.2861005 246.533551
#> hat.par[17,2]   7.224937  2.0189214   3.7562072   5.7514282   7.037035
#> hat.par[18,2]  13.446727  2.7156847   8.6362130  11.5740919  13.210594
#> hat.par[19,2]   2.523815  0.9552056   1.0329537   1.8316419   2.388848
#> hat.par[20,2]  20.275551  3.4007293  13.9392778  17.9419802  20.075434
#> hat.par[21,2]  22.542584  3.8063225  15.3270360  19.8728268  22.430673
#> hat.par[9,3]   80.476141  5.7566248  69.2942815  76.5161444  80.425658
#> hat.par[10,3]  69.308245  4.3063051  60.9231832  66.4090494  69.334230
#> hat.par[12,3]  66.884849  4.6547079  57.6998485  63.8609578  66.791724
#> hat.par[13,3]  35.430830  5.1256320  25.9735121  31.7014502  35.268579
#> hat.par[19,3]   2.692587  0.9778648   1.1920257   1.9848861   2.555053
#> hat.par[10,4]  66.518634  4.2520924  58.0262144  63.7580424  66.666819
#> hat.par[12,4]  62.315142  4.2857059  54.0224091  59.4530219  62.281698
#> hat.par[13,4]  41.208300  4.6510921  32.3060705  38.0774093  41.132665
#>                      75%      97.5%     Rhat n.eff
#> hat.par[1,1]    2.199784   3.428572 1.000869  3000
#> hat.par[2,1]   54.198177  60.347152 1.007357   360
#> hat.par[3,1]   48.050522  54.139562 1.008581   250
#> hat.par[4,1]   45.534946  52.968482 1.028183    83
#> hat.par[5,1]   19.146720  22.666924 1.012523   320
#> hat.par[6,1]   47.128698  52.330931 1.007323   300
#> hat.par[7,1]  162.212781 171.628784 1.027208    80
#> hat.par[8,1]   72.201482  79.384476 1.020166   100
#> hat.par[9,1]   92.748968  99.338802 1.001559  2900
#> hat.par[10,1]  80.976401  85.286396 1.002828  3000
#> hat.par[11,1]  78.645427  86.107070 1.005498   620
#> hat.par[12,1]  79.573709  84.702238 1.015766   140
#> hat.par[13,1]  51.942457  58.091448 1.052882    43
#> hat.par[14,1]  37.757934  44.560743 1.008543   250
#> hat.par[15,1]  38.535561  45.340192 1.026744    82
#> hat.par[16,1] 312.707450 328.863416 1.006515   330
#> hat.par[17,1]  12.525794  16.447137 1.019378   110
#> hat.par[18,1]  23.772523  28.571662 1.000593  3000
#> hat.par[19,1]   4.514016   6.792177 1.002476  1000
#> hat.par[20,1]  26.077533  31.509717 1.002301  3000
#> hat.par[21,1]  34.172351  40.617649 1.014018   170
#> hat.par[1,2]    1.680904   2.907369 1.002499  1000
#> hat.par[2,2]   48.591868  55.247994 1.003633   640
#> hat.par[3,2]   32.479231  37.903053 1.001654  1700
#> hat.par[4,2]   47.163976  54.869768 1.031639    68
#> hat.par[5,2]   12.955170  16.005461 1.003089  1600
#> hat.par[6,2]   36.962705  42.607421 1.007251   300
#> hat.par[7,2]  203.471048 216.216053 1.003856   600
#> hat.par[8,2]   54.187755  60.790041 1.009812   220
#> hat.par[9,2]   84.649481  92.108589 1.012601   170
#> hat.par[10,2]  75.048284  80.095001 1.001794  1500
#> hat.par[11,2] 122.698100 134.323492 1.001113  3000
#> hat.par[12,2]  85.492733  91.485646 1.020760   100
#> hat.par[13,2]  29.759781  35.976256 1.019678   110
#> hat.par[14,2]  34.453152  40.977940 1.025288    84
#> hat.par[15,2]  36.591795  43.590396 1.019567   110
#> hat.par[16,2] 254.821913 272.778443 1.006641   330
#> hat.par[17,2]   8.502414  11.711900 1.021123    99
#> hat.par[18,2]  15.151386  19.257280 1.002350  1400
#> hat.par[19,2]   3.103659   4.808962 1.002076  3000
#> hat.par[20,2]  22.405014  27.406076 1.010567   200
#> hat.par[21,2]  25.029216  30.279170 1.011799   180
#> hat.par[9,3]   84.432016  91.751613 1.022327    97
#> hat.par[10,3]  72.261138  77.693963 1.023655    95
#> hat.par[12,3]  70.001860  76.141050 1.010072   220
#> hat.par[13,3]  38.766145  45.796321 1.011844   180
#> hat.par[19,3]   3.277384   4.978632 1.004119   550
#> hat.par[10,4]  69.436531  74.478304 1.018866   110
#> hat.par[12,4]  65.213347  70.733043 1.010313   220
#> hat.par[13,4]  44.174184  50.547827 1.005019   480
#> 
#> $leverage_o
#>  [1] 0.9325701 0.8841921 0.7355146 0.7776254 0.6395452 0.6479018 0.7963034
#>  [8] 0.6799498 0.6023772 0.5669936 0.7499702 0.5629938 0.8411800 0.7714981
#> [15] 0.8613051 0.9042444 0.9474875 0.8440144 0.7339899 0.7669681 0.8609185
#> [22] 0.2157863 0.8891428 0.6144398 0.8488834 0.5373964 0.7026677 0.8508373
#> [29] 0.6285110 0.6468010 0.6903855 0.9507241 0.7965031 1.0275510 0.7049569
#> [36] 0.8809808 0.9287899 0.3874329 0.6286146 0.3073435 0.6869232 0.6480646
#> [43] 0.6855439 0.7065442 0.6961282 0.9703128 0.1495023 0.6606186 0.6155931
#> [50] 0.7243915
#> 
#> $sign_dev_o
#>  [1]  1  1  1 -1  1 -1 -1 -1  1  1 -1 -1  1  1 -1 -1  1  1  1  1  1 -1 -1 -1  1
#> [26] -1  1  1  1  1  1 -1 -1 -1 -1  1  1 -1 -1 -1 -1 -1 -1 -1  1 -1 -1 -1  1 -1
#> 
#> $phi
#>               mean        sd      2.5%        25%         50%         75%
#> phi[1] -0.33453166 0.4693772 -1.317625 -0.6276799 -0.31567546 -0.02550441
#> phi[2]  0.14622211 0.9554933 -1.734346 -0.5286982  0.17232897  0.86244063
#> phi[3]  0.05037396 0.9469083 -1.837083 -0.5792161  0.06981625  0.70753366
#> phi[4] -0.81557208 0.8285695 -2.403535 -1.3713015 -0.84998430 -0.29468823
#> phi[5] -0.43112873 0.9203390 -2.081707 -1.0603185 -0.48384856  0.14424128
#> phi[6]  0.47010445 0.9138056 -1.482954 -0.1088446  0.53131284  1.09712329
#> phi[7] -0.34256746 0.6878830 -1.741141 -0.7972201 -0.32733509  0.11291696
#> phi[8] -0.03513310 0.9762807 -1.947862 -0.6709125 -0.02758958  0.62456115
#>            97.5%     Rhat n.eff
#> phi[1] 0.5768523 1.218503    15
#> phi[2] 1.8433629 1.045666    50
#> phi[3] 1.8113542 1.024877    85
#> phi[4] 0.9423465 1.082481    32
#> phi[5] 1.4263815 1.101937    26
#> phi[6] 2.1366788 1.006273  3000
#> phi[7] 1.0548385 1.001683  3000
#> phi[8] 1.8444215 1.008904   340
#> 
#> $model_assessment
#>        DIC       pD      dev
#> 1 90.65103 35.88891 54.76212
#> 
#> $measure
#> [1] "OR"
#> 
#> $model
#> [1] "RE"
#> 
#> $assumption
#> [1] "IDE-ARM"
#> 
#> $covariate
#>  [1] 1996 1998 1999 2000 2000 2001 2002 2002 2002 2002 2002 2003 2003 2005 2005
#> [16] 2005 2005 2006 2006 2007 2007
#> 
#> $covar_assumption
#> [1] "exchangeable"
#> 
#> $cov_value
#> [1] 2007
#> 
#> $jagsfit
#> Inference for Bugs model at "4", fit using jags,
#>  3 chains, each with 1000 iterations (first 0 discarded)
#>  n.sims = 3000 iterations saved. Running time = secs
#>                    mu.vect sd.vect    2.5%     25%     50%     75%   97.5%
#> EM[2,1]             -0.658   0.740  -2.024  -1.062  -0.643  -0.312   0.898
#> EM[3,1]             -0.468   0.659  -1.731  -0.835  -0.472  -0.136   0.981
#> EM[4,1]              0.166   0.508  -0.746  -0.160   0.135   0.458   1.302
#> EM[5,1]             -0.407   0.366  -1.200  -0.625  -0.396  -0.158   0.276
#> EM[6,1]              0.192   0.414  -0.557  -0.092   0.183   0.443   1.092
#> EM[7,1]             -0.248   0.268  -0.764  -0.431  -0.259  -0.069   0.297
#> EM[8,1]             -0.416   0.219  -0.905  -0.548  -0.407  -0.268  -0.028
#> EM[3,2]              0.189   0.794  -1.417  -0.196   0.161   0.581   1.845
#> EM[4,2]              0.824   0.830  -0.712   0.312   0.811   1.310   2.520
#> EM[5,2]              0.250   0.794  -1.523  -0.131   0.264   0.718   1.680
#> EM[6,2]              0.850   0.758  -0.581   0.375   0.826   1.299   2.380
#> EM[7,2]              0.409   0.774  -1.234  -0.012   0.403   0.867   1.834
#> EM[8,2]              0.242   0.746  -1.406  -0.090   0.257   0.649   1.508
#> EM[4,3]              0.635   0.748  -0.759   0.134   0.614   1.061   2.294
#> EM[5,3]              0.061   0.723  -1.609  -0.270   0.103   0.477   1.399
#> EM[6,3]              0.661   0.702  -0.647   0.196   0.638   1.062   2.225
#> EM[7,3]              0.220   0.675  -1.184  -0.155   0.229   0.623   1.517
#> EM[8,3]              0.053   0.679  -1.497  -0.277   0.091   0.446   1.302
#> EM[5,4]             -0.574   0.642  -2.095  -0.931  -0.495  -0.146   0.484
#> EM[6,4]              0.026   0.548  -1.013  -0.317   0.012   0.361   1.176
#> EM[7,4]             -0.415   0.518  -1.605  -0.693  -0.364  -0.113   0.584
#> EM[8,4]             -0.582   0.544  -1.868  -0.872  -0.526  -0.207   0.281
#> EM[6,5]              0.600   0.540  -0.267   0.206   0.531   0.909   1.818
#> EM[7,5]              0.159   0.428  -0.600  -0.129   0.115   0.409   1.109
#> EM[8,5]             -0.009   0.401  -0.783  -0.281   0.001   0.234   0.828
#> EM[7,6]             -0.441   0.420  -1.426  -0.670  -0.408  -0.176   0.315
#> EM[8,6]             -0.608   0.462  -1.664  -0.867  -0.583  -0.294   0.162
#> EM[8,7]             -0.167   0.306  -0.810  -0.359  -0.159   0.043   0.391
#> EM.pred[2,1]        -0.657   0.755  -2.054  -1.086  -0.639  -0.304   0.940
#> EM.pred[3,1]        -0.466   0.675  -1.816  -0.846  -0.456  -0.128   0.990
#> EM.pred[4,1]         0.166   0.529  -0.786  -0.180   0.139   0.463   1.333
#> EM.pred[5,1]        -0.406   0.394  -1.238  -0.643  -0.399  -0.148   0.326
#> EM.pred[6,1]         0.195   0.438  -0.597  -0.101   0.186   0.468   1.152
#> EM.pred[7,1]        -0.251   0.308  -0.872  -0.453  -0.258  -0.045   0.353
#> EM.pred[8,1]        -0.412   0.262  -0.996  -0.551  -0.399  -0.243   0.052
#> EM.pred[3,2]         0.190   0.811  -1.462  -0.198   0.168   0.594   1.849
#> EM.pred[4,2]         0.824   0.838  -0.736   0.313   0.801   1.307   2.524
#> EM.pred[5,2]         0.249   0.806  -1.545  -0.139   0.242   0.726   1.715
#> EM.pred[6,2]         0.853   0.772  -0.634   0.354   0.822   1.308   2.427
#> EM.pred[7,2]         0.411   0.781  -1.205  -0.025   0.400   0.885   1.862
#> EM.pred[8,2]         0.239   0.761  -1.366  -0.112   0.251   0.664   1.552
#> EM.pred[4,3]         0.638   0.762  -0.766   0.132   0.607   1.079   2.297
#> EM.pred[5,3]         0.064   0.736  -1.665  -0.287   0.104   0.485   1.455
#> EM.pred[6,3]         0.664   0.721  -0.655   0.185   0.629   1.075   2.280
#> EM.pred[7,3]         0.217   0.688  -1.198  -0.165   0.224   0.626   1.523
#> EM.pred[8,3]         0.049   0.693  -1.600  -0.293   0.085   0.446   1.369
#> EM.pred[5,4]        -0.573   0.659  -2.084  -0.946  -0.498  -0.129   0.555
#> EM.pred[6,4]         0.019   0.568  -1.079  -0.337   0.007   0.367   1.198
#> EM.pred[7,4]        -0.417   0.542  -1.600  -0.719  -0.364  -0.095   0.631
#> EM.pred[8,4]        -0.583   0.564  -1.898  -0.883  -0.524  -0.203   0.372
#> EM.pred[6,5]         0.601   0.562  -0.318   0.198   0.536   0.924   1.888
#> EM.pred[7,5]         0.163   0.458  -0.682  -0.142   0.119   0.440   1.158
#> EM.pred[8,5]        -0.005   0.424  -0.845  -0.277   0.006   0.249   0.882
#> EM.pred[7,6]        -0.440   0.443  -1.430  -0.682  -0.402  -0.161   0.340
#> EM.pred[8,6]        -0.604   0.478  -1.679  -0.883  -0.587  -0.277   0.190
#> EM.pred[8,7]        -0.165   0.341  -0.860  -0.388  -0.151   0.064   0.452
#> SUCRA[1]             0.272   0.181   0.000   0.143   0.286   0.429   0.571
#> SUCRA[2]             0.768   0.290   0.000   0.571   0.857   1.000   1.000
#> SUCRA[3]             0.669   0.310   0.000   0.429   0.714   0.857   1.000
#> SUCRA[4]             0.237   0.260   0.000   0.000   0.143   0.429   0.857
#> SUCRA[5]             0.643   0.261   0.143   0.429   0.714   0.857   1.000
#> SUCRA[6]             0.195   0.212   0.000   0.000   0.143   0.286   0.714
#> SUCRA[7]             0.541   0.234   0.143   0.429   0.571   0.714   1.000
#> SUCRA[8]             0.676   0.203   0.286   0.571   0.714   0.857   1.000
#> abs_risk[1]          0.390   0.000   0.390   0.390   0.390   0.390   0.390
#> abs_risk[2]          0.267   0.133   0.078   0.181   0.252   0.319   0.611
#> abs_risk[3]          0.300   0.127   0.102   0.217   0.285   0.358   0.630
#> abs_risk[4]          0.433   0.118   0.233   0.353   0.423   0.503   0.702
#> abs_risk[5]          0.304   0.074   0.161   0.255   0.301   0.353   0.457
#> abs_risk[6]          0.439   0.098   0.268   0.368   0.434   0.499   0.656
#> abs_risk[7]          0.335   0.059   0.229   0.293   0.331   0.374   0.463
#> abs_risk[8]          0.299   0.045   0.206   0.270   0.298   0.329   0.383
#> beta[1]              0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> beta[2]              0.053   0.150  -0.200  -0.006   0.039   0.092   0.411
#> beta[3]              0.046   0.131  -0.214  -0.010   0.041   0.091   0.334
#> beta[4]              0.062   0.061  -0.045   0.023   0.056   0.095   0.200
#> beta[5]             -0.006   0.083  -0.205  -0.047   0.007   0.048   0.123
#> beta[6]              0.092   0.086  -0.039   0.035   0.079   0.137   0.293
#> beta[7]              0.043   0.042  -0.042   0.015   0.043   0.070   0.128
#> beta[8]              0.012   0.045  -0.093  -0.013   0.016   0.042   0.093
#> beta.all[2,1]        0.053   0.150  -0.200  -0.006   0.039   0.092   0.411
#> beta.all[3,1]        0.046   0.131  -0.214  -0.010   0.041   0.091   0.334
#> beta.all[4,1]        0.062   0.061  -0.045   0.023   0.056   0.095   0.200
#> beta.all[5,1]       -0.006   0.083  -0.205  -0.047   0.007   0.048   0.123
#> beta.all[6,1]        0.092   0.086  -0.039   0.035   0.079   0.137   0.293
#> beta.all[7,1]        0.043   0.042  -0.042   0.015   0.043   0.070   0.128
#> beta.all[8,1]        0.012   0.045  -0.093  -0.013   0.016   0.042   0.093
#> beta.all[3,2]       -0.006   0.165  -0.384  -0.050  -0.001   0.050   0.320
#> beta.all[4,2]        0.009   0.153  -0.314  -0.031   0.007   0.064   0.291
#> beta.all[5,2]       -0.059   0.170  -0.529  -0.101  -0.021   0.016   0.171
#> beta.all[6,2]        0.039   0.146  -0.268  -0.014   0.021   0.094   0.349
#> beta.all[7,2]       -0.010   0.150  -0.366  -0.044   0.000   0.042   0.247
#> beta.all[8,2]       -0.041   0.157  -0.438  -0.079  -0.013   0.020   0.198
#> beta.all[4,3]        0.015   0.132  -0.266  -0.030   0.008   0.064   0.309
#> beta.all[5,3]       -0.052   0.151  -0.440  -0.102  -0.017   0.017   0.185
#> beta.all[6,3]        0.046   0.136  -0.218  -0.013   0.024   0.093   0.365
#> beta.all[7,3]       -0.004   0.132  -0.297  -0.044   0.001   0.045   0.265
#> beta.all[8,3]       -0.034   0.139  -0.378  -0.079  -0.014   0.023   0.209
#> beta.all[5,4]       -0.068   0.108  -0.353  -0.114  -0.039   0.002   0.086
#> beta.all[6,4]        0.030   0.088  -0.133  -0.016   0.015   0.071   0.240
#> beta.all[7,4]       -0.019   0.069  -0.177  -0.053  -0.010   0.018   0.115
#> beta.all[8,4]       -0.050   0.075  -0.242  -0.086  -0.034  -0.001   0.064
#> beta.all[6,5]        0.098   0.124  -0.053   0.007   0.062   0.159   0.413
#> beta.all[7,5]        0.049   0.087  -0.090  -0.005   0.029   0.093   0.261
#> beta.all[8,5]        0.018   0.082  -0.127  -0.026   0.005   0.052   0.224
#> beta.all[7,6]       -0.049   0.090  -0.268  -0.095  -0.029   0.006   0.092
#> beta.all[8,6]       -0.080   0.103  -0.335  -0.131  -0.052  -0.006   0.055
#> beta.all[8,7]       -0.031   0.057  -0.152  -0.065  -0.022   0.004   0.073
#> delta[1,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[2,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[3,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[4,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[5,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[6,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[7,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[8,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[9,1]           0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[10,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[11,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[12,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[13,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[14,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[15,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[16,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[17,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[18,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[19,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[20,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[21,1]          0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> delta[1,2]          -0.126   0.340  -0.776  -0.342  -0.137   0.063   0.633
#> delta[2,2]          -0.094   0.327  -0.693  -0.307  -0.110   0.096   0.646
#> delta[3,2]          -0.468   0.195  -0.870  -0.594  -0.470  -0.342  -0.093
#> delta[4,2]          -0.442   0.166  -0.776  -0.540  -0.447  -0.338  -0.109
#> delta[5,2]          -0.443   0.207  -0.835  -0.582  -0.448  -0.308  -0.032
#> delta[6,2]          -0.370   0.200  -0.707  -0.516  -0.385  -0.231   0.045
#> delta[7,2]          -0.438   0.149  -0.744  -0.530  -0.439  -0.340  -0.149
#> delta[8,2]          -0.419   0.179  -0.742  -0.544  -0.422  -0.302  -0.062
#> delta[9,2]          -0.443   0.181  -0.778  -0.567  -0.448  -0.320  -0.078
#> delta[10,2]         -0.056   0.338  -0.643  -0.297  -0.070   0.135   0.711
#> delta[11,2]         -0.221   0.274  -0.771  -0.416  -0.244  -0.019   0.291
#> delta[12,2]         -0.108   0.301  -0.639  -0.316  -0.121   0.067   0.566
#> delta[13,2]         -0.910   0.422  -1.864  -1.182  -0.852  -0.583  -0.251
#> delta[14,2]         -0.047   0.192  -0.419  -0.173  -0.048   0.074   0.318
#> delta[15,2]         -0.187   0.293  -0.768  -0.400  -0.198   0.035   0.351
#> delta[16,2]         -0.362   0.147  -0.632  -0.468  -0.368  -0.262  -0.060
#> delta[17,2]         -0.316   0.332  -1.006  -0.553  -0.297  -0.074   0.269
#> delta[18,2]         -0.424   0.287  -0.935  -0.617  -0.466  -0.240   0.195
#> delta[19,2]         -0.410   0.290  -0.924  -0.608  -0.451  -0.215   0.192
#> delta[20,2]         -0.432   0.205  -0.829  -0.574  -0.438  -0.291  -0.031
#> delta[21,2]         -0.516   0.189  -0.962  -0.622  -0.495  -0.394  -0.174
#> delta[9,3]          -0.500   0.163  -0.856  -0.596  -0.489  -0.399  -0.191
#> delta[10,3]         -0.392   0.281  -0.860  -0.596  -0.438  -0.211   0.206
#> delta[12,3]         -0.324   0.288  -0.776  -0.532  -0.363  -0.138   0.301
#> delta[13,3]         -0.693   0.359  -1.421  -0.944  -0.671  -0.461   0.036
#> delta[19,3]         -0.478   0.226  -0.975  -0.618  -0.472  -0.331  -0.065
#> delta[10,4]         -0.459   0.205  -0.894  -0.589  -0.458  -0.321  -0.074
#> delta[12,4]         -0.386   0.209  -0.759  -0.532  -0.392  -0.247   0.031
#> delta[13,4]         -0.262   0.309  -0.882  -0.460  -0.296  -0.019   0.303
#> dev.o[1,1]           2.156   2.275   0.006   0.434   1.450   3.096   8.298
#> dev.o[2,1]           0.887   1.213   0.001   0.096   0.435   1.184   4.459
#> dev.o[3,1]           0.871   1.196   0.001   0.089   0.396   1.178   4.182
#> dev.o[4,1]           0.840   1.217   0.001   0.073   0.359   1.088   4.330
#> dev.o[5,1]           0.665   0.980   0.001   0.058   0.286   0.854   3.471
#> dev.o[6,1]           1.078   1.364   0.001   0.130   0.573   1.497   4.892
#> dev.o[7,1]           0.811   1.121   0.001   0.082   0.372   1.095   3.987
#> dev.o[8,1]           0.693   0.984   0.001   0.075   0.311   0.894   3.658
#> dev.o[9,1]           0.755   1.034   0.001   0.075   0.357   1.023   3.691
#> dev.o[10,1]          0.584   0.815   0.001   0.062   0.267   0.755   2.936
#> dev.o[11,1]          0.750   1.079   0.001   0.074   0.335   0.979   3.872
#> dev.o[12,1]          1.075   1.312   0.001   0.159   0.614   1.491   4.738
#> dev.o[13,1]          1.479   1.893   0.002   0.191   0.762   2.105   6.610
#> dev.o[14,1]          0.834   1.164   0.001   0.089   0.406   1.114   3.901
#> dev.o[15,1]          0.924   1.286   0.001   0.102   0.438   1.227   4.430
#> dev.o[16,1]          1.235   1.629   0.001   0.123   0.600   1.692   5.706
#> dev.o[17,1]          1.969   2.270   0.002   0.298   1.187   2.849   8.140
#> dev.o[18,1]          1.254   1.590   0.002   0.137   0.632   1.760   5.746
#> dev.o[19,1]          1.904   1.831   0.007   0.514   1.387   2.837   6.546
#> dev.o[20,1]          0.773   1.092   0.001   0.080   0.341   0.994   4.063
#> dev.o[21,1]          1.372   1.713   0.002   0.190   0.718   1.906   6.055
#> dev.o[1,2]           2.852   1.792   0.550   1.523   2.483   3.774   7.226
#> dev.o[2,2]           0.890   1.257   0.001   0.086   0.417   1.183   4.426
#> dev.o[3,2]           0.794   1.084   0.001   0.084   0.371   1.053   4.003
#> dev.o[4,2]           0.896   1.267   0.001   0.087   0.423   1.184   4.395
#> dev.o[5,2]           0.576   0.819   0.001   0.056   0.257   0.780   3.130
#> dev.o[6,2]           1.253   1.490   0.002   0.157   0.678   1.852   5.233
#> dev.o[7,2]           0.865   1.226   0.001   0.089   0.390   1.153   4.363
#> dev.o[8,2]           0.652   0.914   0.001   0.061   0.291   0.881   3.204
#> dev.o[9,2]           0.663   0.946   0.001   0.064   0.301   0.879   3.324
#> dev.o[10,2]          1.729   1.902   0.004   0.307   1.103   2.542   6.942
#> dev.o[11,2]          0.951   1.415   0.001   0.095   0.402   1.203   4.793
#> dev.o[12,2]          1.111   1.496   0.002   0.118   0.533   1.492   5.316
#> dev.o[13,2]          1.043   1.477   0.001   0.103   0.479   1.368   4.992
#> dev.o[14,2]          0.782   1.100   0.000   0.080   0.368   1.056   3.914
#> dev.o[15,2]          0.968   1.338   0.001   0.104   0.435   1.315   4.797
#> dev.o[16,2]          1.310   1.671   0.002   0.162   0.675   1.789   5.979
#> dev.o[17,2]          2.273   2.115   0.013   0.647   1.701   3.299   7.824
#> dev.o[18,2]          1.233   1.614   0.001   0.130   0.605   1.683   5.811
#> dev.o[19,2]          0.429   0.596   0.000   0.041   0.204   0.572   2.252
#> dev.o[20,2]          0.691   1.002   0.001   0.061   0.304   0.907   3.645
#> dev.o[21,2]          1.315   1.586   0.002   0.170   0.739   1.875   5.668
#> dev.o[9,3]           0.939   1.261   0.001   0.098   0.448   1.294   4.491
#> dev.o[10,3]          0.770   1.095   0.001   0.077   0.333   1.035   3.966
#> dev.o[12,3]          1.243   1.569   0.002   0.153   0.674   1.709   5.675
#> dev.o[13,3]          0.977   1.410   0.001   0.108   0.461   1.287   4.757
#> dev.o[19,3]          1.605   1.334   0.040   0.616   1.277   2.274   5.038
#> dev.o[10,4]          1.100   1.322   0.002   0.155   0.601   1.548   4.849
#> dev.o[12,4]          0.857   1.141   0.001   0.095   0.420   1.155   4.047
#> dev.o[13,4]          1.087   1.454   0.001   0.120   0.545   1.445   5.327
#> effectiveness[1,1]   0.000   0.000   0.000   0.000   0.000   0.000   0.000
#> effectiveness[2,1]   0.434   0.496   0.000   0.000   0.000   1.000   1.000
#> effectiveness[3,1]   0.240   0.427   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,1]   0.016   0.127   0.000   0.000   0.000   0.000   0.000
#> effectiveness[5,1]   0.148   0.355   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,1]   0.007   0.081   0.000   0.000   0.000   0.000   0.000
#> effectiveness[7,1]   0.057   0.232   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,1]   0.098   0.297   0.000   0.000   0.000   0.000   1.000
#> effectiveness[1,2]   0.004   0.060   0.000   0.000   0.000   0.000   0.000
#> effectiveness[2,2]   0.196   0.397   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,2]   0.250   0.433   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,2]   0.026   0.159   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,2]   0.186   0.389   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,2]   0.011   0.104   0.000   0.000   0.000   0.000   0.000
#> effectiveness[7,2]   0.104   0.305   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,2]   0.223   0.417   0.000   0.000   0.000   0.000   1.000
#> effectiveness[1,3]   0.017   0.128   0.000   0.000   0.000   0.000   0.000
#> effectiveness[2,3]   0.108   0.310   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,3]   0.120   0.325   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,3]   0.059   0.236   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,3]   0.224   0.417   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,3]   0.025   0.157   0.000   0.000   0.000   0.000   1.000
#> effectiveness[7,3]   0.177   0.382   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,3]   0.269   0.444   0.000   0.000   0.000   1.000   1.000
#> effectiveness[1,4]   0.088   0.284   0.000   0.000   0.000   0.000   1.000
#> effectiveness[2,4]   0.074   0.261   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,4]   0.113   0.317   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,4]   0.080   0.272   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,4]   0.151   0.358   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,4]   0.056   0.231   0.000   0.000   0.000   0.000   1.000
#> effectiveness[7,4]   0.211   0.408   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,4]   0.226   0.418   0.000   0.000   0.000   0.000   1.000
#> effectiveness[1,5]   0.205   0.404   0.000   0.000   0.000   0.000   1.000
#> effectiveness[2,5]   0.061   0.239   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,5]   0.078   0.268   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,5]   0.087   0.282   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,5]   0.136   0.343   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,5]   0.098   0.297   0.000   0.000   0.000   0.000   1.000
#> effectiveness[7,5]   0.220   0.414   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,5]   0.116   0.320   0.000   0.000   0.000   0.000   1.000
#> effectiveness[1,6]   0.293   0.455   0.000   0.000   0.000   1.000   1.000
#> effectiveness[2,6]   0.052   0.222   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,6]   0.076   0.265   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,6]   0.135   0.341   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,6]   0.081   0.273   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,6]   0.158   0.364   0.000   0.000   0.000   0.000   1.000
#> effectiveness[7,6]   0.160   0.367   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,6]   0.045   0.208   0.000   0.000   0.000   0.000   1.000
#> effectiveness[1,7]   0.241   0.428   0.000   0.000   0.000   0.000   1.000
#> effectiveness[2,7]   0.035   0.185   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,7]   0.066   0.248   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,7]   0.239   0.426   0.000   0.000   0.000   0.000   1.000
#> effectiveness[5,7]   0.051   0.220   0.000   0.000   0.000   0.000   1.000
#> effectiveness[6,7]   0.291   0.454   0.000   0.000   0.000   1.000   1.000
#> effectiveness[7,7]   0.054   0.227   0.000   0.000   0.000   0.000   1.000
#> effectiveness[8,7]   0.023   0.150   0.000   0.000   0.000   0.000   0.000
#> effectiveness[1,8]   0.152   0.359   0.000   0.000   0.000   0.000   1.000
#> effectiveness[2,8]   0.039   0.194   0.000   0.000   0.000   0.000   1.000
#> effectiveness[3,8]   0.058   0.233   0.000   0.000   0.000   0.000   1.000
#> effectiveness[4,8]   0.358   0.479   0.000   0.000   0.000   1.000   1.000
#> effectiveness[5,8]   0.022   0.148   0.000   0.000   0.000   0.000   0.000
#> effectiveness[6,8]   0.354   0.478   0.000   0.000   0.000   1.000   1.000
#> effectiveness[7,8]   0.016   0.127   0.000   0.000   0.000   0.000   0.000
#> effectiveness[8,8]   0.000   0.018   0.000   0.000   0.000   0.000   0.000
#> hat.par[1,1]         1.668   0.812   0.385   1.056   1.568   2.200   3.429
#> hat.par[2,1]        50.747   4.925  41.115  47.320  50.717  54.198  60.347
#> hat.par[3,1]        45.043   4.493  36.598  41.999  45.010  48.051  54.140
#> hat.par[4,1]        42.410   5.025  32.892  39.118  42.164  45.535  52.968
#> hat.par[5,1]        17.494   2.514  12.625  15.841  17.491  19.147  22.667
#> hat.par[6,1]        44.317   4.111  36.242  41.502  44.383  47.129  52.331
#> hat.par[7,1]       157.049   7.616 142.017 151.994 157.101 162.213 171.629
#> hat.par[8,1]        68.756   5.360  57.995  65.093  68.738  72.201  79.384
#> hat.par[9,1]        89.510   4.947  79.922  86.173  89.477  92.749  99.339
#> hat.par[10,1]       78.378   3.657  71.079  75.886  78.433  80.976  85.286
#> hat.par[11,1]       75.018   5.464  64.419  71.327  75.092  78.645  86.107
#> hat.par[12,1]       76.933   4.039  68.443  74.416  77.074  79.574  84.702
#> hat.par[13,1]       48.752   4.780  39.621  45.427  48.716  51.942  58.091
#> hat.par[14,1]       34.609   4.758  26.142  31.248  34.390  37.758  44.561
#> hat.par[15,1]       35.322   4.976  26.165  31.819  35.257  38.536  45.340
#> hat.par[16,1]      303.893  13.124 276.876 295.526 303.867 312.707 328.863
#> hat.par[17,1]       10.838   2.609   6.234   8.978  10.657  12.526  16.447
#> hat.par[18,1]       21.511   3.406  15.272  19.074  21.393  23.773  28.572
#> hat.par[19,1]        3.800   1.310   1.763   2.840   3.649   4.514   6.792
#> hat.par[20,1]       23.674   3.738  16.665  21.095  23.540  26.078  31.510
#> hat.par[21,1]       31.354   4.479  23.358  28.318  31.127  34.172  40.618
#> hat.par[1,2]         1.266   0.704   0.270   0.726   1.150   1.681   2.907
#> hat.par[2,2]        45.144   5.016  35.532  41.708  45.115  48.592  55.248
#> hat.par[3,2]        30.008   3.820  22.598  27.300  29.913  32.479  37.903
#> hat.par[4,2]        43.690   5.489  33.444  39.908  43.445  47.164  54.870
#> hat.par[5,2]        11.560   2.111   7.734  10.074  11.486  12.955  16.005
#> hat.par[6,2]        34.360   3.955  27.251  31.521  34.259  36.963  42.607
#> hat.par[7,2]       196.704   9.946 177.290 189.964 196.705 203.471 216.216
#> hat.par[8,2]        51.067   4.762  42.142  47.771  51.027  54.188  60.790
#> hat.par[9,2]        81.135   5.498  70.457  77.425  81.016  84.649  92.109
#> hat.par[10,2]       72.533   3.869  64.845  69.929  72.519  75.048  80.095
#> hat.par[11,2]      117.165   8.482 100.821 111.569 117.061 122.698 134.323
#> hat.par[12,2]       82.174   4.961  72.042  78.960  82.391  85.493  91.486
#> hat.par[13,2]       26.568   4.675  17.835  23.315  26.281  29.760  35.976
#> hat.par[14,2]       31.464   4.546  23.532  28.346  31.260  34.453  40.978
#> hat.par[15,2]       33.448   4.818  24.662  30.110  33.199  36.592  43.590
#> hat.par[16,2]      246.826  12.606 223.304 238.286 246.534 254.822 272.778
#> hat.par[17,2]        7.225   2.019   3.756   5.751   7.037   8.502  11.712
#> hat.par[18,2]       13.447   2.716   8.636  11.574  13.211  15.151  19.257
#> hat.par[19,2]        2.524   0.955   1.033   1.832   2.389   3.104   4.809
#> hat.par[20,2]       20.276   3.401  13.939  17.942  20.075  22.405  27.406
#> hat.par[21,2]       22.543   3.806  15.327  19.873  22.431  25.029  30.279
#> hat.par[9,3]        80.476   5.757  69.294  76.516  80.426  84.432  91.752
#> hat.par[10,3]       69.308   4.306  60.923  66.409  69.334  72.261  77.694
#> hat.par[12,3]       66.885   4.655  57.700  63.861  66.792  70.002  76.141
#> hat.par[13,3]       35.431   5.126  25.974  31.701  35.269  38.766  45.796
#> hat.par[19,3]        2.693   0.978   1.192   1.985   2.555   3.277   4.979
#> hat.par[10,4]       66.519   4.252  58.026  63.758  66.667  69.437  74.478
#> hat.par[12,4]       62.315   4.286  54.022  59.453  62.282  65.213  70.733
#> hat.par[13,4]       41.208   4.651  32.306  38.077  41.133  44.174  50.548
#> phi[1]              -0.335   0.469  -1.318  -0.628  -0.316  -0.026   0.577
#> phi[2]               0.146   0.955  -1.734  -0.529   0.172   0.862   1.843
#> phi[3]               0.050   0.947  -1.837  -0.579   0.070   0.708   1.811
#> phi[4]              -0.816   0.829  -2.404  -1.371  -0.850  -0.295   0.942
#> phi[5]              -0.431   0.920  -2.082  -1.060  -0.484   0.144   1.426
#> phi[6]               0.470   0.914  -1.483  -0.109   0.531   1.097   2.137
#> phi[7]              -0.343   0.688  -1.741  -0.797  -0.327   0.113   1.055
#> phi[8]              -0.035   0.976  -1.948  -0.671  -0.028   0.625   1.844
#> tau                  0.121   0.083   0.013   0.047   0.109   0.174   0.314
#> totresdev.o         54.762   9.129  38.357  48.322  54.252  60.423  73.938
#> deviance           582.422  13.492 557.480 572.937 581.523 591.203 611.437
#>                     Rhat n.eff
#> EM[2,1]            1.038   400
#> EM[3,1]            1.028  1400
#> EM[4,1]            1.222    14
#> EM[5,1]            1.013  1100
#> EM[6,1]            1.076    33
#> EM[7,1]            1.068    39
#> EM[8,1]            1.030   180
#> EM[3,2]            1.034  1300
#> EM[4,2]            1.084    45
#> EM[5,2]            1.031   360
#> EM[6,2]            1.032   120
#> EM[7,2]            1.042   210
#> EM[8,2]            1.042   450
#> EM[4,3]            1.080    35
#> EM[5,3]            1.034  1300
#> EM[6,3]            1.029   130
#> EM[7,3]            1.029   310
#> EM[8,3]            1.030   770
#> EM[5,4]            1.128    23
#> EM[6,4]            1.044    54
#> EM[7,4]            1.109    24
#> EM[8,4]            1.225    14
#> EM[6,5]            1.043    70
#> EM[7,5]            1.035   160
#> EM[8,5]            1.018   220
#> EM[7,6]            1.024   160
#> EM[8,6]            1.089    30
#> EM[8,7]            1.091    28
#> EM.pred[2,1]       1.037   410
#> EM.pred[3,1]       1.026  1600
#> EM.pred[4,1]       1.190    15
#> EM.pred[5,1]       1.012   790
#> EM.pred[6,1]       1.068    39
#> EM.pred[7,1]       1.047    54
#> EM.pred[8,1]       1.022   280
#> EM.pred[3,2]       1.032  1000
#> EM.pred[4,2]       1.080    45
#> EM.pred[5,2]       1.031   360
#> EM.pred[6,2]       1.029   130
#> EM.pred[7,2]       1.039   180
#> EM.pred[8,2]       1.040   440
#> EM.pred[4,3]       1.078    35
#> EM.pred[5,3]       1.033  1600
#> EM.pred[6,3]       1.027   120
#> EM.pred[7,3]       1.029   310
#> EM.pred[8,3]       1.030   900
#> EM.pred[5,4]       1.119    24
#> EM.pred[6,4]       1.044    54
#> EM.pred[7,4]       1.097    26
#> EM.pred[8,4]       1.209    14
#> EM.pred[6,5]       1.042    72
#> EM.pred[7,5]       1.034   150
#> EM.pred[8,5]       1.016   270
#> EM.pred[7,6]       1.025   170
#> EM.pred[8,6]       1.075    34
#> EM.pred[8,7]       1.078    33
#> SUCRA[1]           1.181    16
#> SUCRA[2]           1.004   810
#> SUCRA[3]           1.001  3000
#> SUCRA[4]           1.136    21
#> SUCRA[5]           1.014   170
#> SUCRA[6]           1.009   690
#> SUCRA[7]           1.031    84
#> SUCRA[8]           1.062    46
#> abs_risk[1]        1.000     1
#> abs_risk[2]        1.017   240
#> abs_risk[3]        1.024  1600
#> abs_risk[4]        1.226    13
#> abs_risk[5]        1.012  2000
#> abs_risk[6]        1.066    35
#> abs_risk[7]        1.060    42
#> abs_risk[8]        1.031   180
#> beta[1]            1.000     1
#> beta[2]            1.104   310
#> beta[3]            1.041   610
#> beta[4]            1.094    28
#> beta[5]            1.168    19
#> beta[6]            1.050    98
#> beta[7]            1.004   810
#> beta[8]            1.116    24
#> beta.all[2,1]      1.104   310
#> beta.all[3,1]      1.041   610
#> beta.all[4,1]      1.094    28
#> beta.all[5,1]      1.168    19
#> beta.all[6,1]      1.050    98
#> beta.all[7,1]      1.004   810
#> beta.all[8,1]      1.116    24
#> beta.all[3,2]      1.064   960
#> beta.all[4,2]      1.096   470
#> beta.all[5,2]      1.149    40
#> beta.all[6,2]      1.064  3000
#> beta.all[7,2]      1.105   450
#> beta.all[8,2]      1.128    88
#> beta.all[4,3]      1.043   430
#> beta.all[5,3]      1.091    49
#> beta.all[6,3]      1.026  1100
#> beta.all[7,3]      1.041  1000
#> beta.all[8,3]      1.062   140
#> beta.all[5,4]      1.177    19
#> beta.all[6,4]      1.031   390
#> beta.all[7,4]      1.056    44
#> beta.all[8,4]      1.137    22
#> beta.all[6,5]      1.132    24
#> beta.all[7,5]      1.173    19
#> beta.all[8,5]      1.064    63
#> beta.all[7,6]      1.047   150
#> beta.all[8,6]      1.089    44
#> beta.all[8,7]      1.093    30
#> delta[1,1]         1.000     1
#> delta[2,1]         1.000     1
#> delta[3,1]         1.000     1
#> delta[4,1]         1.000     1
#> delta[5,1]         1.000     1
#> delta[6,1]         1.000     1
#> delta[7,1]         1.000     1
#> delta[8,1]         1.000     1
#> delta[9,1]         1.000     1
#> delta[10,1]        1.000     1
#> delta[11,1]        1.000     1
#> delta[12,1]        1.000     1
#> delta[13,1]        1.000     1
#> delta[14,1]        1.000     1
#> delta[15,1]        1.000     1
#> delta[16,1]        1.000     1
#> delta[17,1]        1.000     1
#> delta[18,1]        1.000     1
#> delta[19,1]        1.000     1
#> delta[20,1]        1.000     1
#> delta[21,1]        1.000     1
#> delta[1,2]         1.197    15
#> delta[2,2]         1.232    13
#> delta[3,2]         1.101    28
#> delta[4,2]         1.037    97
#> delta[5,2]         1.080    38
#> delta[6,2]         1.123    22
#> delta[7,2]         1.076    40
#> delta[8,2]         1.122    24
#> delta[9,2]         1.104    29
#> delta[10,2]        1.293    11
#> delta[11,2]        1.062    44
#> delta[12,2]        1.256    12
#> delta[13,2]        1.030    83
#> delta[14,2]        1.026    84
#> delta[15,2]        1.037    70
#> delta[16,2]        1.147    19
#> delta[17,2]        1.022    94
#> delta[18,2]        1.320    11
#> delta[19,2]        1.321    11
#> delta[20,2]        1.073    38
#> delta[21,2]        1.046    65
#> delta[9,3]         1.036    84
#> delta[10,3]        1.405     9
#> delta[12,3]        1.396     9
#> delta[13,3]        1.016   930
#> delta[19,3]        1.055    61
#> delta[10,4]        1.107    27
#> delta[12,4]        1.117    25
#> delta[13,4]        1.027   130
#> dev.o[1,1]         1.001  3000
#> dev.o[2,1]         1.007   420
#> dev.o[3,1]         1.002  1000
#> dev.o[4,1]         1.001  2600
#> dev.o[5,1]         1.006   380
#> dev.o[6,1]         1.002  1000
#> dev.o[7,1]         1.003   830
#> dev.o[8,1]         1.002  3000
#> dev.o[9,1]         1.002  2000
#> dev.o[10,1]        1.002  1000
#> dev.o[11,1]        1.004   540
#> dev.o[12,1]        1.008   310
#> dev.o[13,1]        1.026    88
#> dev.o[14,1]        1.002  1800
#> dev.o[15,1]        1.001  3000
#> dev.o[16,1]        1.002  2800
#> dev.o[17,1]        1.014   160
#> dev.o[18,1]        1.001  3000
#> dev.o[19,1]        1.001  2600
#> dev.o[20,1]        1.004  1300
#> dev.o[21,1]        1.012   200
#> dev.o[1,2]         1.003   960
#> dev.o[2,2]         1.001  3000
#> dev.o[3,2]         1.001  2700
#> dev.o[4,2]         1.003   710
#> dev.o[5,2]         1.002  2700
#> dev.o[6,2]         1.004   540
#> dev.o[7,2]         1.002  1300
#> dev.o[8,2]         1.001  2200
#> dev.o[9,2]         1.002  2500
#> dev.o[10,2]        1.001  3000
#> dev.o[11,2]        1.001  2100
#> dev.o[12,2]        1.005   500
#> dev.o[13,2]        1.002  1900
#> dev.o[14,2]        1.013   410
#> dev.o[15,2]        1.003   760
#> dev.o[16,2]        1.007   470
#> dev.o[17,2]        1.014   160
#> dev.o[18,2]        1.001  3000
#> dev.o[19,2]        1.001  3000
#> dev.o[20,2]        1.001  2600
#> dev.o[21,2]        1.008   270
#> dev.o[9,3]         1.007   380
#> dev.o[10,3]        1.010   260
#> dev.o[12,3]        1.005   470
#> dev.o[13,3]        1.002  2200
#> dev.o[19,3]        1.003   900
#> dev.o[10,4]        1.018   160
#> dev.o[12,4]        1.008   390
#> dev.o[13,4]        1.001  3000
#> effectiveness[1,1] 1.000     1
#> effectiveness[2,1] 1.005   480
#> effectiveness[3,1] 1.002  1000
#> effectiveness[4,1] 1.097   280
#> effectiveness[5,1] 1.004   800
#> effectiveness[6,1] 1.274   170
#> effectiveness[7,1] 1.104    83
#> effectiveness[8,1] 1.009   580
#> effectiveness[1,2] 1.193   510
#> effectiveness[2,2] 1.004   760
#> effectiveness[3,2] 1.001  3000
#> effectiveness[4,2] 1.117   150
#> effectiveness[5,2] 1.004   670
#> effectiveness[6,2] 1.063   670
#> effectiveness[7,2] 1.008   600
#> effectiveness[8,2] 1.007   400
#> effectiveness[1,3] 1.152   160
#> effectiveness[2,3] 1.011   460
#> effectiveness[3,3] 1.007   640
#> effectiveness[4,3] 1.163    49
#> effectiveness[5,3] 1.002  1500
#> effectiveness[6,3] 1.001  3000
#> effectiveness[7,3] 1.001  3000
#> effectiveness[8,3] 1.014   180
#> effectiveness[1,4] 1.062    96
#> effectiveness[2,4] 1.020   350
#> effectiveness[3,4] 1.001  3000
#> effectiveness[4,4] 1.063   100
#> effectiveness[5,4] 1.001  3000
#> effectiveness[6,4] 1.005  1800
#> effectiveness[7,4] 1.004   680
#> effectiveness[8,4] 1.001  3000
#> effectiveness[1,5] 1.036    87
#> effectiveness[2,5] 1.015   570
#> effectiveness[3,5] 1.001  3000
#> effectiveness[4,5] 1.033   180
#> effectiveness[5,5] 1.005   730
#> effectiveness[6,5] 1.018   300
#> effectiveness[7,5] 1.006   480
#> effectiveness[8,5] 1.038   130
#> effectiveness[1,6] 1.020   120
#> effectiveness[2,6] 1.029   340
#> effectiveness[3,6] 1.010   650
#> effectiveness[4,6] 1.003  1200
#> effectiveness[5,6] 1.015   440
#> effectiveness[6,6] 1.004   810
#> effectiveness[7,6] 1.003  1100
#> effectiveness[8,6] 1.078   140
#> effectiveness[1,7] 1.008   340
#> effectiveness[2,7] 1.007  2100
#> effectiveness[3,7] 1.014   560
#> effectiveness[4,7] 1.007   390
#> effectiveness[5,7] 1.009  1100
#> effectiveness[6,7] 1.003   710
#> effectiveness[7,7] 1.030   310
#> effectiveness[8,7] 1.215    78
#> effectiveness[1,8] 1.245    17
#> effectiveness[2,8] 1.039   320
#> effectiveness[3,8] 1.001  3000
#> effectiveness[4,8] 1.065    37
#> effectiveness[5,8] 1.053   390
#> effectiveness[6,8] 1.001  3000
#> effectiveness[7,8] 1.109   250
#> effectiveness[8,8] 1.291  3000
#> hat.par[1,1]       1.001  3000
#> hat.par[2,1]       1.007   360
#> hat.par[3,1]       1.009   250
#> hat.par[4,1]       1.028    83
#> hat.par[5,1]       1.013   320
#> hat.par[6,1]       1.007   300
#> hat.par[7,1]       1.027    80
#> hat.par[8,1]       1.020   100
#> hat.par[9,1]       1.002  2900
#> hat.par[10,1]      1.003  3000
#> hat.par[11,1]      1.005   620
#> hat.par[12,1]      1.016   140
#> hat.par[13,1]      1.053    43
#> hat.par[14,1]      1.009   250
#> hat.par[15,1]      1.027    82
#> hat.par[16,1]      1.007   330
#> hat.par[17,1]      1.019   110
#> hat.par[18,1]      1.001  3000
#> hat.par[19,1]      1.002  1000
#> hat.par[20,1]      1.002  3000
#> hat.par[21,1]      1.014   170
#> hat.par[1,2]       1.002  1000
#> hat.par[2,2]       1.004   640
#> hat.par[3,2]       1.002  1700
#> hat.par[4,2]       1.032    68
#> hat.par[5,2]       1.003  1600
#> hat.par[6,2]       1.007   300
#> hat.par[7,2]       1.004   600
#> hat.par[8,2]       1.010   220
#> hat.par[9,2]       1.013   170
#> hat.par[10,2]      1.002  1500
#> hat.par[11,2]      1.001  3000
#> hat.par[12,2]      1.021   100
#> hat.par[13,2]      1.020   110
#> hat.par[14,2]      1.025    84
#> hat.par[15,2]      1.020   110
#> hat.par[16,2]      1.007   330
#> hat.par[17,2]      1.021    99
#> hat.par[18,2]      1.002  1400
#> hat.par[19,2]      1.002  3000
#> hat.par[20,2]      1.011   200
#> hat.par[21,2]      1.012   180
#> hat.par[9,3]       1.022    97
#> hat.par[10,3]      1.024    95
#> hat.par[12,3]      1.010   220
#> hat.par[13,3]      1.012   180
#> hat.par[19,3]      1.004   550
#> hat.par[10,4]      1.019   110
#> hat.par[12,4]      1.010   220
#> hat.par[13,4]      1.005   480
#> phi[1]             1.219    15
#> phi[2]             1.046    50
#> phi[3]             1.025    85
#> phi[4]             1.082    32
#> phi[5]             1.102    26
#> phi[6]             1.006  3000
#> phi[7]             1.002  3000
#> phi[8]             1.009   340
#> tau                1.229    16
#> totresdev.o        1.010   240
#> deviance           1.004   620
#> 
#> For each parameter, n.eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
#> 
#> DIC info (using the rule: pV = var(deviance)/2)
#> pV = 90.8 and DIC = 673.2
#> DIC is an estimate of expected predictive error (lower deviance is better).
#> 
#> $data
#>                    study t1 t2 t3 t4  r1  r2 r3 r4  m1 m2 m3 m4  n1  n2  n3  n4
#> 1  Llewellyn-Jones, 1996  1  4 NA NA   3   0 NA NA   1  0 NA NA   8   8  NA  NA
#> 2         Paggiaro, 1998  1  4 NA NA  51  45 NA NA  27 19 NA NA 139 142  NA  NA
#> 3           Mahler, 1999  1  7 NA NA  47  28 NA NA  23  9 NA NA 143 135  NA  NA
#> 4         Casaburi, 2000  1  8 NA NA  41  45 NA NA  18 12 NA NA 191 279  NA  NA
#> 5        van Noord, 2000  1  7 NA NA  18  11 NA NA   8  7 NA NA  50  47  NA  NA
#> 6          Rennard, 2001  1  7 NA NA  41  38 NA NA  29 22 NA NA 135 132  NA  NA
#> 7         Casaburi, 2002  1  8 NA NA 156 198 NA NA  77 66 NA NA 371 550  NA  NA
#> 8          Chapman, 2002  1  7 NA NA  68  52 NA NA  28 20 NA NA 207 201  NA  NA
#> 9          Donohue, 2002  1  7  8 NA  92  82 77 NA  37 20 10 NA 201 213 209  NA
#> 10          Mahler, 2002  1  4  7  5  79  77 63 68  69 68 45 52 181 168 160 165
#> 11           Rossi, 2002  1  6 NA NA  75 117 NA NA  59 92 NA NA 220 425  NA  NA
#> 12         Hanania, 2003  1  4  7  5  73  79 65 71  59 49 57 53 185 183 177 178
#> 13      Szafranski, 2003  1  2  6  3  53  26 38 35  90 62 64 59 205 198 201 208
#> 14          Briggs, 2005  8  7 NA NA  30  36 NA NA  29 41 NA NA 328 325  NA  NA
#> 15        Campbell, 2005  1  6 NA NA  34  35 NA NA  39 30 NA NA 217 215  NA  NA
#> 16      Niewoehner, 2005  1  8 NA NA 296 255 NA NA 111 75 NA NA 915 914  NA  NA
#> 17       van Noord, 2005  8  6 NA NA   4  14 NA NA   1  1 NA NA  70  69  NA  NA
#> 18          Barnes, 2006  1  5 NA NA  24  11 NA NA   4  8 NA NA  73  67  NA  NA
#> 19       O Donnell, 2006  1  7  5 NA   6   1  2 NA   5  1  3 NA  64  59  62  NA
#> 20     Baumgartner, 2007  1  7 NA NA  24  20 NA NA  32 26 NA NA 143 144  NA  NA
#> 21         Freeman, 2007  1  8 NA NA  35  19 NA NA  33 18 NA NA 195 200  NA  NA
#> 
#> $n_chains
#> [1] 3
#> 
#> $n_iter
#> [1] 1000
#> 
#> $n_burnin
#> [1] 100
#> 
#> $n_thin
#> [1] 1
#> 
#> $abs_risk
#>                  mean         sd       2.5%       25%       50%       75%
#> abs_risk[1] 0.3900000 0.00000000 0.39000000 0.3900000 0.3900000 0.3900000
#> abs_risk[2] 0.2666283 0.13342927 0.07788563 0.1810451 0.2515591 0.3186958
#> abs_risk[3] 0.3001786 0.12696525 0.10174625 0.2171406 0.2851022 0.3582583
#> abs_risk[4] 0.4331099 0.11763922 0.23265914 0.3526155 0.4226267 0.5027292
#> abs_risk[5] 0.3039669 0.07414167 0.16144830 0.2549247 0.3007873 0.3530916
#> abs_risk[6] 0.4386527 0.09825909 0.26819248 0.3683451 0.4342299 0.4988054
#> abs_risk[7] 0.3353066 0.05916891 0.22941732 0.2934488 0.3305075 0.3736425
#> abs_risk[8] 0.2987017 0.04474788 0.20554540 0.2698887 0.2984930 0.3285122
#>                 97.5%     Rhat n.eff
#> abs_risk[1] 0.3900000 1.000000     1
#> abs_risk[2] 0.6108405 1.017443   240
#> abs_risk[3] 0.6302444 1.024186  1600
#> abs_risk[4] 0.7016427 1.225811    13
#> abs_risk[5] 0.4573047 1.012389  2000
#> abs_risk[6] 0.6558503 1.066362    35
#> abs_risk[7] 0.4625082 1.060376    42
#> abs_risk[8] 0.3833826 1.031128   180
#> 
#> $SUCRA
#>               mean        sd      2.5%       25%       50%       75%     97.5%
#> SUCRA[1] 0.2715238 0.1810778 0.0000000 0.1428571 0.2857143 0.4285714 0.5714286
#> SUCRA[2] 0.7679048 0.2902673 0.0000000 0.5714286 0.8571429 1.0000000 1.0000000
#> SUCRA[3] 0.6690000 0.3099730 0.0000000 0.4285714 0.7142857 0.8571429 1.0000000
#> SUCRA[4] 0.2367619 0.2602858 0.0000000 0.0000000 0.1428571 0.4285714 0.8571429
#> SUCRA[5] 0.6427619 0.2606288 0.1428571 0.4285714 0.7142857 0.8571429 1.0000000
#> SUCRA[6] 0.1949524 0.2118473 0.0000000 0.0000000 0.1428571 0.2857143 0.7142857
#> SUCRA[7] 0.5410952 0.2335822 0.1428571 0.4285714 0.5714286 0.7142857 1.0000000
#> SUCRA[8] 0.6760000 0.2028126 0.2857143 0.5714286 0.7142857 0.8571429 1.0000000
#>              Rhat n.eff
#> SUCRA[1] 1.181145    16
#> SUCRA[2] 1.003919   810
#> SUCRA[3] 1.000636  3000
#> SUCRA[4] 1.135873    21
#> SUCRA[5] 1.013855   170
#> SUCRA[6] 1.009218   690
#> SUCRA[7] 1.031292    84
#> SUCRA[8] 1.062481    46
#> 
#> $effectiveness
#>                            mean         sd 2.5% 25% 50% 75% 97.5%     Rhat
#> effectiveness[1,1] 0.0000000000 0.00000000    0   0   0   0     0 1.000000
#> effectiveness[2,1] 0.4343333333 0.49575176    0   0   0   1     1 1.004667
#> effectiveness[3,1] 0.2400000000 0.42715433    0   0   0   0     1 1.002420
#> effectiveness[4,1] 0.0163333333 0.12677505    0   0   0   0     0 1.097230
#> effectiveness[5,1] 0.1480000000 0.35515918    0   0   0   0     1 1.004405
#> effectiveness[6,1] 0.0066666667 0.08139060    0   0   0   0     0 1.273690
#> effectiveness[7,1] 0.0570000000 0.23188127    0   0   0   0     1 1.103642
#> effectiveness[8,1] 0.0976666667 0.29691291    0   0   0   0     1 1.009192
#> effectiveness[1,2] 0.0036666667 0.06045197    0   0   0   0     0 1.193131
#> effectiveness[2,2] 0.1963333333 0.39728978    0   0   0   0     1 1.003691
#> effectiveness[3,2] 0.2496666667 0.43289224    0   0   0   0     1 1.001176
#> effectiveness[4,2] 0.0260000000 0.15916169    0   0   0   0     1 1.116769
#> effectiveness[5,2] 0.1860000000 0.38917154    0   0   0   0     1 1.004452
#> effectiveness[6,2] 0.0110000000 0.10431983    0   0   0   0     0 1.062585
#> effectiveness[7,2] 0.1040000000 0.30531143    0   0   0   0     1 1.008436
#> effectiveness[8,2] 0.2233333333 0.41654939    0   0   0   0     1 1.006706
#> effectiveness[1,3] 0.0166666667 0.12804044    0   0   0   0     0 1.152111
#> effectiveness[2,3] 0.1080000000 0.31043215    0   0   0   0     1 1.010582
#> effectiveness[3,3] 0.1203333333 0.32540516    0   0   0   0     1 1.006907
#> effectiveness[4,3] 0.0593333333 0.23628690    0   0   0   0     1 1.162847
#> effectiveness[5,3] 0.2240000000 0.41699156    0   0   0   0     1 1.001838
#> effectiveness[6,3] 0.0253333333 0.15716166    0   0   0   0     1 1.001227
#> effectiveness[7,3] 0.1773333333 0.38201422    0   0   0   0     1 1.000838
#> effectiveness[8,3] 0.2690000000 0.44351389    0   0   0   1     1 1.013776
#> effectiveness[1,4] 0.0883333333 0.28382637    0   0   0   0     1 1.062438
#> effectiveness[2,4] 0.0736666667 0.26127121    0   0   0   0     1 1.020001
#> effectiveness[3,4] 0.1133333333 0.31705267    0   0   0   0     1 1.000958
#> effectiveness[4,4] 0.0803333333 0.27185386    0   0   0   0     1 1.062766
#> effectiveness[5,4] 0.1513333333 0.35843323    0   0   0   0     1 1.000801
#> effectiveness[6,4] 0.0563333333 0.23060272    0   0   0   0     1 1.004798
#> effectiveness[7,4] 0.2110000000 0.40808640    0   0   0   0     1 1.003917
#> effectiveness[8,4] 0.2256666667 0.41809029    0   0   0   0     1 1.001018
#> effectiveness[1,5] 0.2046666667 0.40352509    0   0   0   0     1 1.035790
#> effectiveness[2,5] 0.0610000000 0.23937021    0   0   0   0     1 1.014633
#> effectiveness[3,5] 0.0776666667 0.26769094    0   0   0   0     1 1.000520
#> effectiveness[4,5] 0.0870000000 0.28188204    0   0   0   0     1 1.032810
#> effectiveness[5,5] 0.1363333333 0.34319938    0   0   0   0     1 1.005292
#> effectiveness[6,5] 0.0980000000 0.29736421    0   0   0   0     1 1.018037
#> effectiveness[7,5] 0.2196666667 0.41408982    0   0   0   0     1 1.005574
#> effectiveness[8,5] 0.1156666667 0.31987810    0   0   0   0     1 1.037839
#> effectiveness[1,6] 0.2933333333 0.45536580    0   0   0   1     1 1.019695
#> effectiveness[2,6] 0.0520000000 0.22206404    0   0   0   0     1 1.028817
#> effectiveness[3,6] 0.0756666667 0.26450812    0   0   0   0     1 1.010434
#> effectiveness[4,6] 0.1346666667 0.34142409    0   0   0   0     1 1.003115
#> effectiveness[5,6] 0.0810000000 0.27288060    0   0   0   0     1 1.014560
#> effectiveness[6,6] 0.1576666667 0.36448892    0   0   0   0     1 1.004143
#> effectiveness[7,6] 0.1603333333 0.36697608    0   0   0   0     1 1.002809
#> effectiveness[8,6] 0.0453333333 0.20806887    0   0   0   0     1 1.077702
#> effectiveness[1,7] 0.2413333333 0.42796332    0   0   0   0     1 1.007521
#> effectiveness[2,7] 0.0353333333 0.18465171    0   0   0   0     1 1.006510
#> effectiveness[3,7] 0.0656666667 0.24773981    0   0   0   0     1 1.013993
#> effectiveness[4,7] 0.2386666667 0.42633963    0   0   0   0     1 1.006630
#> effectiveness[5,7] 0.0510000000 0.22003440    0   0   0   0     1 1.008619
#> effectiveness[6,7] 0.2906666667 0.45414569    0   0   0   1     1 1.003317
#> effectiveness[7,7] 0.0543333333 0.22671205    0   0   0   0     1 1.030475
#> effectiveness[8,7] 0.0230000000 0.14992829    0   0   0   0     0 1.215066
#> effectiveness[1,8] 0.1520000000 0.35908074    0   0   0   0     1 1.244922
#> effectiveness[2,8] 0.0393333333 0.19441919    0   0   0   0     1 1.039022
#> effectiveness[3,8] 0.0576666667 0.23315090    0   0   0   0     1 1.000928
#> effectiveness[4,8] 0.3576666667 0.47939319    0   0   0   1     1 1.065438
#> effectiveness[5,8] 0.0223333333 0.14778984    0   0   0   0     0 1.053418
#> effectiveness[6,8] 0.3543333333 0.47839054    0   0   0   1     1 1.000820
#> effectiveness[7,8] 0.0163333333 0.12677505    0   0   0   0     0 1.108675
#> effectiveness[8,8] 0.0003333333 0.01825742    0   0   0   0     0 1.290904
#>                    n.eff
#> effectiveness[1,1]     1
#> effectiveness[2,1]   480
#> effectiveness[3,1]  1000
#> effectiveness[4,1]   280
#> effectiveness[5,1]   800
#> effectiveness[6,1]   170
#> effectiveness[7,1]    83
#> effectiveness[8,1]   580
#> effectiveness[1,2]   510
#> effectiveness[2,2]   760
#> effectiveness[3,2]  3000
#> effectiveness[4,2]   150
#> effectiveness[5,2]   670
#> effectiveness[6,2]   670
#> effectiveness[7,2]   600
#> effectiveness[8,2]   400
#> effectiveness[1,3]   160
#> effectiveness[2,3]   460
#> effectiveness[3,3]   640
#> effectiveness[4,3]    49
#> effectiveness[5,3]  1500
#> effectiveness[6,3]  3000
#> effectiveness[7,3]  3000
#> effectiveness[8,3]   180
#> effectiveness[1,4]    96
#> effectiveness[2,4]   350
#> effectiveness[3,4]  3000
#> effectiveness[4,4]   100
#> effectiveness[5,4]  3000
#> effectiveness[6,4]  1800
#> effectiveness[7,4]   680
#> effectiveness[8,4]  3000
#> effectiveness[1,5]    87
#> effectiveness[2,5]   570
#> effectiveness[3,5]  3000
#> effectiveness[4,5]   180
#> effectiveness[5,5]   730
#> effectiveness[6,5]   300
#> effectiveness[7,5]   480
#> effectiveness[8,5]   130
#> effectiveness[1,6]   120
#> effectiveness[2,6]   340
#> effectiveness[3,6]   650
#> effectiveness[4,6]  1200
#> effectiveness[5,6]   440
#> effectiveness[6,6]   810
#> effectiveness[7,6]  1100
#> effectiveness[8,6]   140
#> effectiveness[1,7]   340
#> effectiveness[2,7]  2100
#> effectiveness[3,7]   560
#> effectiveness[4,7]   390
#> effectiveness[5,7]  1100
#> effectiveness[6,7]   710
#> effectiveness[7,7]   310
#> effectiveness[8,7]    78
#> effectiveness[1,8]    17
#> effectiveness[2,8]   320
#> effectiveness[3,8]  3000
#> effectiveness[4,8]    37
#> effectiveness[5,8]   390
#> effectiveness[6,8]  3000
#> effectiveness[7,8]   250
#> effectiveness[8,8]  3000
#> 
#> $D
#> [1] 0
#> 
#> attr(,"class")
#> [1] "run_metareg"
# }