Calculates the robustness index, a novel index that quantifies the overall divergence of the sensitivity analysis results from the primary analysis results. The robustness index considers objective decision rules to infer the presence or lack of robustness of the primary analysis results when conducting a sensitivity analysis (Spineli et al., 2021).
Arguments
- sens
An object of S3 class
run_sensitivity
when sensitivity analysis refers to different scenarios about the average missingness parameter. See 'Value' inrun_sensitivity
. For a general sensitivity analysis, insert a list of at least two objects of S3 classrun_model
orrun_metareg
indicating different re-analyses: the first object in the list should refer to the primary analysis.- prediction
Logical character on whether to consider the prediction (
TRUE
) or estimation of the summary treatment effects (FALSE
). This is only relevant for a random-effects model and the default argument isFALSE
(estimation).- threshold
A number indicating the threshold of robustness, that is, the minimally allowed deviation between the primary analysis and re-analysis results. See 'Details' below.
Value
robustness_index
prints on the R console a message in green
text on the threshold of robustness determined by the user.
Then, the function returns the following list of elements:
- robust_index
A numeric scalar or vector on the robustness index values. In the case of a pairwise meta-analysis,
robust_index
is scalar as only one summary effect size is obtained. In the case of network meta-analysis,robust_index
is a vector with length equal to the number of possible pairwise comparisons; one robustness index per possible comparison.- robust
A character or character vector (of same length with
robust_index
) on whether the primary analysis results are robust or frail to the different re-analyses.- kld
A vector or matrix on the Kullback-Leibler divergence (KLD) measure in the summary effect size from a subsequent re-analysis to the primary analysis. In the case of a pairwise meta-analysis,
kld
is a vector with length equal to the number of total analyses (one KLD value is obtained per analysis). The number of total analyses equals the square of the number of scenarios indicated in the argumentmean_scenarios
ofrun_sensitivity
, in the case of missing participant outcome data; otherwise, the length of the character vector in argumentsens
. In the case of network meta-analysis,robust_index
is a matrix with number of rows equal to the number of total analyses and number of columns equal to the number of possible pairwise comparisons; one KLD value per analysis and possible comparison.- threshold
The threshold used to be inherited by the
heatmap_robustness
function.- scenarios
The scenarios considered to be inherited by the
kld_barplot
function.
Details
Thresholds of robustness have been proposed only for the odds ratio
and standardised mean difference (Spineli et al., 2021).
The user may consider the values 0.28 and 0.17 in the argument
threshold
for the odds ratio and standardised mean difference effect
measures (the default values), respectively, or consider other plausible
values. When the argument threshold
has not been defined,
robustness_index
considers the default values 0.28 and 0.17 as
threshold for robustness for binary and continuous outcome, respectively,
regardless of the effect measure (the default thresholds may not be proper
choices for other effect measures; hence, use these threshold with great
caution in this case). Spineli et al. (2021) offers a discussion on
specifying the threshold
of robustness.
In the case of binary outcome, robustness_index
considers the
results in the odds ratio scale to calculate the robustness index.
This is because, the odds ratio is used as the 'best-case' effect measure
in run_model
. Then, relative risk, and risk difference are
functions of the odds ratio and the selected baseline risk (See 'Details'
in run_model
).
In the case of missing participant outcome data, the primary analysis is
considered to be the middle of the numbers in the argument
mean_scenarios
of run_sensitivity
(see 'Arguments'
and 'Details' in run_sensitivity
). Furhermore,
robustness_index
can be used in that context only when missing
participant outcome data have been extracted for at least one trial.
Otherwise, the execution of the function will be stopped and an error
message will be printed in the R console.
In the case of a general sensitivity analysis, the compared models should refer to the same effect measure and the same meta-analysis model (i.e., fixed-effect or random-effects).
In robust
, the value "robust"
appears when
robust_index
is less than threshold
; otherwise, the value
"frail"
appears.
References
Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat 1951;22(1):79–86. doi: 10.1214/aoms/1177729694
Spineli LM, Kalyvas C, Papadimitropoulou K. Quantifying the robustness of primary analysis results: A case study on missing outcome data in pairwise and network meta-analysis. Res Synth Methods 2021;12(4):475–90. doi: 10.1002/jrsm.1478
Examples
data("nma.baker2009")
# Read results from 'run_sensitivity' (using the default arguments)
res_sens <- readRDS(system.file('extdata/res_sens_baker.rds',
package = 'rnmamod'))
# Calculate the robustness index
robustness_index(sens = res_sens,
threshold = 0.28)
#> The value 0.28 was assigned as 'threshold' for odds ratio.
#> $robust_index
#> [1] 0.45825757 0.40000000 0.45387223 0.51478151 0.48062459 0.31780497
#> [7] 0.34785054 0.08366600 0.11401754 0.08366600 0.10488088 0.24698178
#> [13] 0.26457513 0.07745967 0.06324555 0.07745967 0.18973666 0.20000000
#> [19] 0.12247449 0.06324555 0.18165902 0.20000000 0.04472136 0.18973666
#> [25] 0.21213203 0.11832160 0.16124515 0.05477226
#>
#> $robust
#> [1] "frail" "frail" "frail" "frail" "frail" "frail" "frail" "robust"
#> [9] "robust" "robust" "robust" "robust" "robust" "robust" "robust" "robust"
#> [17] "robust" "robust" "robust" "robust" "robust" "robust" "robust" "robust"
#> [25] "robust" "robust" "robust" "robust"
#>
#> $kld
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.03143496 0.02796963 0.055058416 0.125452928 0.196018804 0.013912157
#> [2,] 0.02543702 0.01920250 0.043161377 0.091735629 0.146776953 0.019573044
#> [3,] 0.03405799 0.03059699 0.056604557 0.116167819 0.170723488 0.016309098
#> [4,] 0.02951539 0.04548642 0.093447495 0.146961033 0.214858236 0.009077864
#> [5,] 0.01113434 0.03216688 0.109525620 0.166811784 0.247708559 0.003877332
#> [6,] 0.01951722 0.01086042 0.020786834 0.091750311 0.165670683 0.029723758
#> [7,] 0.04998651 0.02082673 0.021052758 0.076821621 0.147532529 0.046796072
#> [8,] 0.04989347 0.03309033 0.019555306 0.027614613 0.033629565 0.005643233
#> [9,] 0.04486888 0.03923226 0.033844111 0.041112954 0.052304306 0.014171171
#> [10,] 0.02902816 0.02737892 0.021368567 0.029429527 0.035216212 0.014288434
#> [11,] 0.01450164 0.01118354 0.010032892 0.014450268 0.019383796 0.004623395
#> [12,] 0.02734489 0.02961612 0.033151278 0.061701609 0.086408868 0.008612444
#> [13,] 0.03628689 0.03747297 0.047533123 0.080519739 0.109411182 0.012209439
#> [14,] 0.03472138 0.02893725 0.019598727 0.024299059 0.027933502 0.015519021
#> [15,] 0.03039907 0.03019554 0.018994336 0.015199623 0.018396590 0.019615407
#> [16,] 0.01750883 0.01454469 0.010723813 0.008458197 0.005050863 0.009345788
#> [17,] 0.01921020 0.02019464 0.024987792 0.037464730 0.051152380 0.011409928
#> [18,] 0.02358055 0.02438248 0.031703395 0.052986855 0.067429896 0.012530294
#> [19,] 0.05688734 0.06522904 0.046346822 0.040560882 0.037222429 0.027758787
#> [20,] 0.01958700 0.02872948 0.021625476 0.013624033 0.011923788 0.006174286
#> [21,] 0.04855291 0.04361876 0.030655428 0.035677143 0.031113092 0.019055721
#> [22,] 0.05115298 0.04878439 0.041096263 0.053712343 0.048622138 0.022627111
#> [23,] 0.01142135 0.01065841 0.008975878 0.004187517 0.003444494 0.005165492
#> [24,] 0.03599252 0.04075226 0.048066877 0.042427435 0.048430174 0.016616661
#> [25,] 0.05016524 0.06033360 0.062757451 0.061811728 0.070595835 0.022314447
#> [26,] 0.02050571 0.02854462 0.053504773 0.045924247 0.056261386 0.006777018
#> [27,] 0.03272550 0.04509633 0.069504861 0.071161202 0.084445355 0.006854829
#> [28,] 0.02820476 0.02854098 0.013259454 0.011535247 0.011121530 0.008623787
#> [,7] [,8] [,9] [,10] [,11]
#> [1,] 0.012635907 0.0345111366 0.076040440 0.110159742 0.0325710603
#> [2,] 0.007552997 0.0235592374 0.057539137 0.105413277 0.0422239720
#> [3,] 0.008545467 0.0381733605 0.084574047 0.118771536 0.0324497037
#> [4,] 0.015190431 0.0246016818 0.091345984 0.136589695 0.0265719807
#> [5,] 0.002163974 0.0308755774 0.100226627 0.150372515 0.0351852594
#> [6,] 0.010629545 0.0094664492 0.057500734 0.105562756 0.0454659057
#> [7,] 0.018758751 0.0088146221 0.060973183 0.119920601 0.0582538415
#> [8,] 0.009707479 0.0070248754 0.009284702 0.006343006 0.0007590439
#> [9,] 0.013152956 0.0199737870 0.015926428 0.021112447 0.0045872158
#> [10,] 0.012995884 0.0095565514 0.008615908 0.010552018 0.0046558621
#> [11,] 0.004736495 0.0063616130 0.006540508 0.008273813 0.0052234803
#> [12,] 0.013727905 0.0237629411 0.035964385 0.044094640 0.0106219700
#> [13,] 0.017485710 0.0289618004 0.040229347 0.048606665 0.0110262681
#> [14,] 0.015270182 0.0136434794 0.009343775 0.014808220 0.0072103373
#> [15,] 0.015447861 0.0052643668 0.006463093 0.007423185 0.0062578747
#> [16,] 0.004769091 0.0031395312 0.002539431 0.004803469 0.0073926899
#> [17,] 0.008054395 0.0152864520 0.023148034 0.037971823 0.0151285300
#> [18,] 0.008808176 0.0171088792 0.026238435 0.041346593 0.0156539829
#> [19,] 0.022516904 0.0136286036 0.011412669 0.013909778 0.0002166782
#> [20,] 0.004164008 0.0061287770 0.002216074 0.002699664 0.0002625998
#> [21,] 0.015660875 0.0253835007 0.022765288 0.022595283 0.0025400748
#> [22,] 0.016338439 0.0296181091 0.026026844 0.024768890 0.0032085867
#> [23,] 0.004946949 0.0009981894 0.003028267 0.001084037 0.0002915975
#> [24,] 0.016824835 0.0111546755 0.026618707 0.027447035 0.0017907530
#> [25,] 0.025559022 0.0150603987 0.030131129 0.032665880 0.0019734863
#> [26,] 0.006912700 0.0118231997 0.025919989 0.031108128 0.0024523076
#> [27,] 0.008316147 0.0163663580 0.031320234 0.036711683 0.0029309439
#> [28,] 0.010398057 0.0062078390 0.006016504 0.002358181 0.0009362008
#> [,12] [,13] [,14] [,15] [,16] [,17]
#> [1,] 1.040630e-02 0 1.164902e-02 4.204829e-02 0.134543244 0.095648309
#> [2,] 1.276933e-02 0 1.089570e-02 3.910933e-02 0.122007318 0.089693065
#> [3,] 6.267439e-03 0 1.678665e-02 5.603486e-02 0.121278648 0.075088547
#> [4,] 7.006353e-03 0 1.125546e-02 2.877036e-02 0.124126947 0.101362316
#> [5,] 1.093077e-02 0 1.200075e-02 6.427553e-02 0.130560278 0.073951720
#> [6,] 2.032658e-02 0 1.877611e-02 7.476512e-02 0.094322149 0.044053262
#> [7,] 2.190801e-02 0 1.982677e-02 8.307096e-02 0.107225101 0.052422580
#> [8,] 1.623253e-04 0 4.557987e-04 1.463448e-03 0.007773402 0.006289221
#> [9,] 3.362800e-03 0 6.533559e-04 2.881607e-03 0.020817558 0.017962139
#> [10,] 1.957335e-03 0 1.572967e-03 7.566119e-03 0.018121486 0.010187176
#> [11,] 1.383241e-03 0 2.215096e-03 3.495025e-03 0.029169640 0.025878108
#> [12,] 2.114031e-03 0 3.472683e-03 1.057402e-02 0.066073893 0.056075063
#> [13,] 3.254108e-03 0 3.538819e-03 1.091195e-02 0.066468155 0.055432680
#> [14,] 3.137903e-03 0 3.219365e-04 1.612032e-03 0.012596538 0.012370418
#> [15,] 2.377907e-03 0 8.200578e-04 5.435890e-03 0.009833125 0.006057058
#> [16,] 2.136754e-03 0 1.448610e-03 1.783064e-03 0.018598750 0.018648103
#> [17,] 2.873479e-03 0 2.586324e-03 8.376764e-03 0.052360163 0.047794559
#> [18,] 3.855192e-03 0 2.686450e-03 8.568660e-03 0.053571928 0.047993208
#> [19,] 2.045975e-03 0 5.051936e-04 2.105341e-03 0.002608169 0.004347026
#> [20,] 9.613066e-04 0 5.980695e-04 9.195487e-07 0.001499387 0.001222761
#> [21,] 1.130349e-03 0 2.172512e-03 4.312372e-03 0.027366544 0.022231718
#> [22,] 5.214653e-04 0 2.357629e-03 4.947864e-03 0.030091849 0.023513960
#> [23,] 2.024377e-04 0 8.139796e-05 2.278073e-03 0.001665226 0.005451690
#> [24,] 3.433409e-05 0 8.920290e-04 1.486432e-03 0.030988707 0.039076011
#> [25,] 2.852599e-04 0 9.069232e-04 1.174206e-03 0.031875678 0.038731295
#> [26,] 9.183757e-05 0 3.955442e-04 5.175883e-03 0.021081630 0.015812170
#> [27,] 2.845253e-04 0 5.291961e-04 6.232539e-03 0.023977626 0.017356998
#> [28,] 1.267331e-04 0 5.834451e-06 7.911580e-04 0.003982528 0.003640608
#> [,18] [,19] [,20] [,21] [,22] [,23]
#> [1,] 0.042487843 0.0106463822 0.0049171837 0.223608521 0.192673633 0.100042059
#> [2,] 0.038347943 0.0074420702 0.0031213380 0.221013974 0.164464609 0.080496336
#> [3,] 0.042181108 0.0135991614 0.0060590213 0.237049354 0.176502923 0.119589142
#> [4,] 0.049122862 0.0131807149 0.0046040366 0.264519469 0.199087503 0.118089411
#> [5,] 0.029089442 0.0008059454 0.0070371123 0.205479242 0.143685400 0.050963673
#> [6,] 0.010629566 0.0074674204 0.0249425848 0.143297831 0.080884399 0.027226127
#> [7,] 0.015764281 0.0047428870 0.0243847732 0.176391820 0.099628581 0.031745531
#> [8,] 0.008251357 0.0096907986 0.0077012507 0.010866329 0.013563288 0.011593977
#> [9,] 0.007597600 0.0047053070 0.0036050973 0.024580727 0.027938245 0.012242492
#> [10,] 0.005336946 0.0044078932 0.0041772919 0.023145986 0.022593803 0.010828709
#> [11,] 0.012927402 0.0065187566 0.0043482660 0.053823714 0.054666538 0.038184489
#> [12,] 0.031573307 0.0157961102 0.0092958150 0.113079651 0.112847393 0.070583758
#> [13,] 0.029059236 0.0136730496 0.0078265796 0.109946905 0.111954549 0.069502717
#> [14,] 0.004377798 0.0058657778 0.0040183263 0.017991351 0.013758014 0.007134809
#> [15,] 0.003161499 0.0028137835 0.0031520756 0.014848275 0.008329188 0.004264062
#> [16,] 0.008723452 0.0037461567 0.0019333675 0.042459716 0.032061684 0.022740165
#> [17,] 0.026484981 0.0118861841 0.0054696232 0.101617982 0.084003351 0.051573564
#> [18,] 0.024655143 0.0109142310 0.0050677870 0.099074801 0.083634871 0.051537082
#> [19,] 0.002561615 0.0044773479 0.0033483441 0.006285256 0.006035002 0.003384348
#> [20,] 0.002674612 0.0049587453 0.0071346665 0.013073903 0.010624032 0.019157476
#> [21,] 0.023491309 0.0197374824 0.0134362025 0.074739245 0.065050674 0.064800681
#> [22,] 0.021975735 0.0203392339 0.0161521210 0.076337861 0.066970903 0.067684648
#> [23,] 0.003669885 0.0060804031 0.0083579692 0.010711292 0.010860714 0.015395395
#> [24,] 0.026903746 0.0223632534 0.0186015010 0.076165711 0.074754399 0.060983392
#> [25,] 0.023884413 0.0194777145 0.0163754149 0.072920624 0.072687844 0.061373953
#> [26,] 0.011260031 0.0045273984 0.0011704912 0.032311489 0.030611620 0.013912927
#> [27,] 0.010123069 0.0035442703 0.0009974872 0.031341715 0.031484138 0.015100289
#> [28,] 0.005745668 0.0073554835 0.0053779593 0.012360609 0.011709647 0.013174067
#> [,24] [,25]
#> [1,] 0.046230251 0.020476941
#> [2,] 0.034039561 0.016574904
#> [3,] 0.063417681 0.046690905
#> [4,] 0.053360895 0.034057050
#> [5,] 0.008449433 0.001574758
#> [6,] 0.009511592 0.018432498
#> [7,] 0.011516544 0.019748169
#> [8,] 0.011697306 0.010519283
#> [9,] 0.011427620 0.006319430
#> [10,] 0.006878600 0.005632575
#> [11,] 0.026566803 0.018438287
#> [12,] 0.044682077 0.031917902
#> [13,] 0.042379734 0.028876100
#> [14,] 0.008525952 0.008171267
#> [15,] 0.003196416 0.005644399
#> [16,] 0.016278182 0.013737923
#> [17,] 0.031811625 0.026189122
#> [18,] 0.030723705 0.024288117
#> [19,] 0.005552698 0.003038684
#> [20,] 0.021835370 0.031279222
#> [21,] 0.054745546 0.064624548
#> [22,] 0.055360457 0.064022863
#> [23,] 0.016557831 0.024647105
#> [24,] 0.046004530 0.055025719
#> [25,] 0.044052337 0.051021511
#> [26,] 0.005440407 0.003660743
#> [27,] 0.005066223 0.003251848
#> [28,] 0.010746082 0.012487789
#>
#> $measure
#> [1] "OR"
#>
#> $threshold
#> [1] 0.28
#>
#> $scenarios
#> [1] -1.098612289 -0.693147181 -0.000100005 0.693147181 1.098612289
#>
#> attr(,"class")
#> [1] "robustness_index"